aboutsummaryrefslogtreecommitdiffhomepage
path: root/workspace/TS100/src/Setup.c
blob: 50f742a3fae8e812d8306346371012c02035315c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/*
 * Setup.c
 *
 *  Created on: 29Aug.,2017
 *      Author: Ben V. Brown
 */
#include "Setup.h"
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
DMA_HandleTypeDef hdma_adc1;

I2C_HandleTypeDef hi2c1;
DMA_HandleTypeDef hdma_i2c1_rx;
DMA_HandleTypeDef hdma_i2c1_tx;

IWDG_HandleTypeDef hiwdg;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;

uint16_t ADCReadings[64];  // room for 32 lots of the pair of readings

// Functions
static void SystemClock_Config(void);
static void MX_ADC1_Init(void);
static void MX_I2C1_Init(void);
static void MX_IWDG_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM2_Init(void);
static void MX_DMA_Init(void);
static void MX_GPIO_Init(void);
static void MX_ADC2_Init(void);

void Setup_HAL() {
	SystemClock_Config();
	#ifndef LOCAL_BUILD
__HAL_AFIO_REMAP_SWJ_DISABLE();
	#else 
__HAL_AFIO_REMAP_SWJ_NOJTAG();
	#endif
	
	
	MX_GPIO_Init();
	MX_DMA_Init();
	MX_I2C1_Init();
	MX_ADC1_Init();
	MX_ADC2_Init();
	MX_TIM3_Init();
	MX_TIM2_Init();
	MX_IWDG_Init();
	HAL_ADC_Start(&hadc2);
	HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint32_t*) ADCReadings, 64); // start DMA of normal readings
	HAL_ADCEx_InjectedStart(&hadc1);   // enable injected  readings
	HAL_ADCEx_InjectedStart(&hadc2);   // enable injected  readings
}

// channel 0 -> temperature sensor, 1-> VIN
uint16_t getADC(uint8_t channel) {
	uint32_t sum = 0;
	for (uint8_t i = 0; i < 32; i++)
		sum += ADCReadings[channel + (i * 2)];
	return sum >> 2;
}

/** System Clock Configuration
 */
void SystemClock_Config(void) {
	RCC_OscInitTypeDef RCC_OscInitStruct;
	RCC_ClkInitTypeDef RCC_ClkInitStruct;
	RCC_PeriphCLKInitTypeDef PeriphClkInit;

	/**Initializes the CPU, AHB and APB busses clocks
	 */
	RCC_OscInitStruct.OscillatorType =
	RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSI;
	RCC_OscInitStruct.HSIState = RCC_HSI_ON;
	RCC_OscInitStruct.HSICalibrationValue = 16;
	RCC_OscInitStruct.LSIState = RCC_LSI_ON;
	RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
	RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
	RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;  // 64MHz
	HAL_RCC_OscConfig(&RCC_OscInitStruct);

	/**Initializes the CPU, AHB and APB busses clocks
	 */
	RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK |
	RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
	RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
	RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
	RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV16;  // TIM
														// 2,3,4,5,6,7,12,13,14
	RCC_ClkInitStruct.APB2CLKDivider =
	RCC_HCLK_DIV1;  // 64 mhz to some peripherals and adc

	HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2);

	PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
	PeriphClkInit.AdcClockSelection =
	RCC_ADCPCLK2_DIV6;  // 6 or 8 are the only non overclocked options
	HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);

	/**Configure the Systick interrupt time
	 */
	HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);

	/**Configure the Systick
	 */
	HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

	/* SysTick_IRQn interrupt configuration */
	HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
}

/* ADC1 init function */
static void MX_ADC1_Init(void) {
	ADC_MultiModeTypeDef multimode;

	ADC_ChannelConfTypeDef sConfig;
	ADC_InjectionConfTypeDef sConfigInjected;
	/**Common config
	 */
	hadc1.Instance = ADC1;
	hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
	hadc1.Init.ContinuousConvMode = ENABLE;
	hadc1.Init.DiscontinuousConvMode = DISABLE;
	hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
	hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
	hadc1.Init.NbrOfConversion = 2;
	HAL_ADC_Init(&hadc1);

	/**Configure the ADC multi-mode
	 */
	multimode.Mode = ADC_DUALMODE_REGSIMULT_INJECSIMULT;
	HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode);

	/**Configure Regular Channel
	 */
	sConfig.Channel = TMP36_ADC1_CHANNEL;
	sConfig.Rank = 1;
	sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
	HAL_ADC_ConfigChannel(&hadc1, &sConfig);

	/**Configure Regular Channel
	 */
	sConfig.Channel = VIN_ADC1_CHANNEL;
	sConfig.Rank = 2;
	HAL_ADC_ConfigChannel(&hadc1, &sConfig);

	/**Configure Injected Channel
	 */
	// F in = 10.66 MHz
	/*
	 * Injected time is 1 delay clock + (12 adc cycles*4)+4*sampletime =~217
	 * clocks = 0.2ms Charge time is 0.016 uS ideally So Sampling time must be >=
	 * 0.016uS 1/10.66MHz is 0.09uS, so 1 CLK is *should* be enough
	 * */
	sConfigInjected.InjectedChannel = TIP_TEMP_ADC1_CHANNEL;
	sConfigInjected.InjectedRank = 1;
	sConfigInjected.InjectedNbrOfConversion = 4;
	sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_7CYCLES_5;
	sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
	sConfigInjected.AutoInjectedConv = DISABLE;
	sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
	sConfigInjected.InjectedOffset = 0;

	HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);

	sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;
	sConfigInjected.InjectedRank = 2;
	HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
	sConfigInjected.InjectedRank = 3;
	HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
	sConfigInjected.InjectedRank = 4;
	HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected);
	SET_BIT(hadc1.Instance->CR1, (ADC_CR1_JEOCIE)); // Enable end of injected conv irq
	// Run ADC internal calibration
	while (HAL_ADCEx_Calibration_Start(&hadc1) != HAL_OK)
		;
}

/* ADC2 init function */
static void MX_ADC2_Init(void) {
	ADC_ChannelConfTypeDef sConfig;
	ADC_InjectionConfTypeDef sConfigInjected;

	/**Common config
	 */
	hadc2.Instance = ADC2;
	hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE;
	hadc2.Init.ContinuousConvMode = ENABLE;
	hadc2.Init.DiscontinuousConvMode = DISABLE;
	hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
	hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
	hadc2.Init.NbrOfConversion = 2;
	HAL_ADC_Init(&hadc2);

	/**Configure Regular Channel
	 */
	sConfig.Channel = TIP_TEMP_ADC2_CHANNEL;
	sConfig.Rank = ADC_REGULAR_RANK_1;
	sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
	HAL_ADC_ConfigChannel(&hadc2, &sConfig);
	sConfig.Channel = VIN_ADC2_CHANNEL;
	sConfig.Rank = ADC_REGULAR_RANK_2;
	sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
	HAL_ADC_ConfigChannel(&hadc2, &sConfig);

	/**Configure Injected Channel
	 */
	sConfigInjected.InjectedChannel = TIP_TEMP_ADC2_CHANNEL;
	sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1;
	sConfigInjected.InjectedNbrOfConversion = 4;
	sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_7CYCLES_5;
	sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJECCONV_T2_CC1;
	sConfigInjected.AutoInjectedConv = DISABLE;
	sConfigInjected.InjectedDiscontinuousConvMode = DISABLE;
	sConfigInjected.InjectedOffset = 0;
	HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
	sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_1CYCLE_5;

	sConfigInjected.InjectedRank = ADC_INJECTED_RANK_2;
	HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
	sConfigInjected.InjectedRank = ADC_INJECTED_RANK_3;
	HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);
	sConfigInjected.InjectedRank = ADC_INJECTED_RANK_4;
	HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected);

	// Run ADC internal calibration
	while (HAL_ADCEx_Calibration_Start(&hadc2) != HAL_OK)
		;
}
/* I2C1 init function */
static void MX_I2C1_Init(void) {
	hi2c1.Instance = I2C1;
	hi2c1.Init.ClockSpeed = 75000;
	// OLED doesnt handle >100k when its asleep (off).
	hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
	hi2c1.Init.OwnAddress1 = 0;
	hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
	hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
	hi2c1.Init.OwnAddress2 = 0;
	hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
	hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
	HAL_I2C_Init(&hi2c1);
}

/* IWDG init function */
static void MX_IWDG_Init(void) {
	hiwdg.Instance = IWDG;
	hiwdg.Init.Prescaler = IWDG_PRESCALER_256;
	hiwdg.Init.Reload = 100;
#ifndef LOCAL_BUILD
	HAL_IWDG_Init(&hiwdg);
#endif
}

/* TIM3 init function */
static void MX_TIM3_Init(void) {
	TIM_ClockConfigTypeDef sClockSourceConfig;
	TIM_MasterConfigTypeDef sMasterConfig;
	TIM_OC_InitTypeDef sConfigOC;

	htim3.Instance = TIM3;
	htim3.Init.Prescaler = 8;
	htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
	htim3.Init.Period = 400;                            // 5 Khz PWM freq
	htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4;  // 4mhz before div
	htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;//Preload the ARR register (though we dont use this)
	HAL_TIM_Base_Init(&htim3);

	sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
	HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig);

	HAL_TIM_PWM_Init(&htim3);

	HAL_TIM_OC_Init(&htim3);

	sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
	sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
	HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig);

	sConfigOC.OCMode = TIM_OCMODE_PWM1;
	sConfigOC.Pulse = 80;//80% duty cycle, that is AC coupled through the cap
	sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
	sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
	HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, PWM_Out_CHANNEL);

	GPIO_InitTypeDef GPIO_InitStruct;

	/**TIM3 GPIO Configuration
	 PWM_Out_Pin     ------> TIM3_CH1
	 */
	GPIO_InitStruct.Pin = PWM_Out_Pin;
	GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;//We would like sharp rising edges
	HAL_GPIO_Init(PWM_Out_GPIO_Port, &GPIO_InitStruct);
#ifdef MODEL_TS100
	// Remap TIM3_CH1 to be on PB4
	__HAL_AFIO_REMAP_TIM3_PARTIAL();
#else
	// No re-map required
#endif
	HAL_TIM_PWM_Start(&htim3, PWM_Out_CHANNEL);
}
/* TIM3 init function */
static void MX_TIM2_Init(void) {
	/*
	 * We use the channel 1 to trigger the ADC at end of PWM period
	 * And we use the channel 4 as the PWM modulation source using Interrupts
	 * */
	TIM_ClockConfigTypeDef sClockSourceConfig;
	TIM_MasterConfigTypeDef sMasterConfig;
	TIM_OC_InitTypeDef sConfigOC;

	// Timer 2 is fairly slow as its being used to run the PWM and trigger the ADC
	// in the PWM off time.
	htim2.Instance = TIM2;
	htim2.Init.Prescaler = 2000; //1mhz tick rate/800 = 1.25 KHz tick rate

	// pwm out is 10k from tim3, we want to run our PWM at around 10hz or slower on the output stage
	// The input is 1mhz after the div/4, so divide this by 785 to give around 4Hz output change rate
	//Trade off is the slower the PWM output the slower we can respond and we gain temperature accuracy in settling time,
	//But it increases the time delay between the heat cycle and the measurement and calculate cycle
	htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
	htim2.Init.Period = 255 + 20;
	htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV4;  // 4mhz before divide
	htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
	htim2.Init.RepetitionCounter=0;
	HAL_TIM_Base_Init(&htim2);

	sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
	HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);

	HAL_TIM_PWM_Init(&htim2);
	HAL_TIM_OC_Init(&htim2);

	sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
	sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
	HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);

	sConfigOC.OCMode = TIM_OCMODE_PWM1;
	sConfigOC.Pulse = 255 + 10;
	//255 is the largest time period of the drive signal, and then offset ADC sample to be a bit delayed after this
	/*
	 * It takes 4 milliseconds for output to be stable after PWM turns off.
	 * Assume ADC samples in 0.5ms
	 * We need to set this to 100% + 4.5ms
	 * */
	sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
	sConfigOC.OCFastMode = TIM_OCFAST_ENABLE;
	HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_1);
	sConfigOC.Pulse = 0;//default to entirely off
	HAL_TIM_OC_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_4);

	HAL_TIM_Base_Start_IT(&htim2);
	HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
	HAL_TIM_PWM_Start_IT(&htim2, TIM_CHANNEL_4);
	HAL_NVIC_SetPriority(TIM2_IRQn, 15, 0);
	HAL_NVIC_EnableIRQ(TIM2_IRQn);
}

/**
 * Enable DMA controller clock
 */
static void MX_DMA_Init(void) {
	/* DMA controller clock enable */
	__HAL_RCC_DMA1_CLK_ENABLE()
	;

	/* DMA interrupt init */
	/* DMA1_Channel1_IRQn interrupt configuration */
	HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 5, 0);
	HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
	/* DMA1_Channel6_IRQn interrupt configuration */
	HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 0);
	HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
	/* DMA1_Channel7_IRQn interrupt configuration */
	HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 0);
	HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
}

/** Configure pins as
 * Analog
 * Input
 * Output
 * EVENT_OUT
 * EXTI
 * Free pins are configured automatically as Analog
 PB0   ------> ADCx_IN8
 PB1   ------> ADCx_IN9
 */
static void MX_GPIO_Init(void) {
	GPIO_InitTypeDef GPIO_InitStruct;

	/* GPIO Ports Clock Enable */
	__HAL_RCC_GPIOD_CLK_ENABLE()
	;
	__HAL_RCC_GPIOA_CLK_ENABLE()
	;
	__HAL_RCC_GPIOB_CLK_ENABLE()
	;

	/*Configure GPIO pin Output Level */
	HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
	/*Configure GPIO pins : PD0 PD1 */
	GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
	GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
	HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
	/*Configure peripheral I/O remapping */
	__HAL_AFIO_REMAP_PD01_ENABLE()
	;
	//^ remap XTAL so that pins can be analog (all input buffers off).
	// reduces power consumption

	/*
	 * Configure All pins as analog by default
	 */
	GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
	GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 |
	GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_15;
	GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
	HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
	GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 |
#ifdef MODEL_TS100
			GPIO_PIN_3 |
#endif
			GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 |
			GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 |
			GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
	HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

#ifdef MODEL_TS100
	/* Pull USB lines low to disable, pull down debug too*/
	GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_14 | GPIO_PIN_13;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_RESET);
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_12, GPIO_PIN_RESET);
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_13, GPIO_PIN_RESET);
	HAL_GPIO_WritePin(GPIOA, GPIO_PIN_14, GPIO_PIN_RESET);
#else
	/* TS80 */
	/* Leave USB lines open circuit*/

#endif

	/*Configure GPIO pins : KEY_B_Pin KEY_A_Pin */
	GPIO_InitStruct.Pin = KEY_B_Pin | KEY_A_Pin;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
	GPIO_InitStruct.Pull = GPIO_PULLUP;
	HAL_GPIO_Init(KEY_B_GPIO_Port, &GPIO_InitStruct);

	/*Configure GPIO pin : OLED_RESET_Pin */
	GPIO_InitStruct.Pin = OLED_RESET_Pin;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
	HAL_GPIO_Init(OLED_RESET_GPIO_Port, &GPIO_InitStruct);
	HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);

	// Pull down LCD reset
	HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_RESET);
	HAL_Delay(30);
	HAL_GPIO_WritePin(OLED_RESET_GPIO_Port, OLED_RESET_Pin, GPIO_PIN_SET);
}