1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
/*
* hardware.c
*
* Created on: 2Sep.,2017
* Author: Ben V. Brown
*/
// These are all the functions for interacting with the hardware
#include "hardware.h"
#include "FreeRTOS.h"
#include "stm32f1xx_hal.h"
#include "cmsis_os.h"
#include "history.hpp"
volatile uint16_t PWMSafetyTimer = 0;
volatile int16_t CalibrationTempOffset = 0;
uint16_t tipGainCalValue = 0;
void setTipType(enum TipType tipType, uint8_t manualCalGain) {
if (manualCalGain)
tipGainCalValue = manualCalGain;
else
tipGainCalValue = lookupTipDefaultCalValue(tipType);
}
void setCalibrationOffset(int16_t offSet) {
CalibrationTempOffset = offSet;
}
uint16_t getHandleTemperature() {
// We return the current handle temperature in X10 C
// TMP36 in handle, 0.5V offset and then 10mV per deg C (0.75V @ 25C for
// example) STM32 = 4096 count @ 3.3V input -> But We oversample by 32/(2^2) =
// 8 times oversampling Therefore 32768 is the 3.3V input, so 0.1007080078125
// mV per count So we need to subtract an offset of 0.5V to center on 0C
// (4964.8 counts)
//
int32_t result = getADC(0);
result -= 4965; // remove 0.5V offset
// 10mV per C
// 99.29 counts per Deg C above 0C
result *= 100;
result /= 993;
return result;
}
uint16_t tipMeasurementToC(uint16_t raw) {
//((Raw Tip-RawOffset) * calibrationgain) / 1000 = tip delta in CX10
// tip delta in CX10 + handleTemp in CX10 = tip absolute temp in CX10
// Div answer by 10 to get final result
uint32_t tipDelta = ((raw - CalibrationTempOffset) * tipGainCalValue)
/ 1000;
tipDelta += getHandleTemperature();
return tipDelta / 10;
}
uint16_t ctoTipMeasurement(uint16_t temp) {
//[ (temp-handle/10) * 10000 ]/calibrationgain = tip raw delta
// tip raw delta + tip offset = tip ADC reading
int32_t TipRaw = ((temp - (getHandleTemperature() / 10)) * 10000)
/ tipGainCalValue;
TipRaw += CalibrationTempOffset;
return TipRaw;
}
uint16_t tipMeasurementToF(uint16_t raw) {
// Convert result from C to F
return (tipMeasurementToC(raw) * 9) / 5 + 32;
}
uint16_t ftoTipMeasurement(uint16_t temp) {
// Convert the temp back to C from F
return ctoTipMeasurement(((temp - 32) * 5) / 9);
}
uint16_t getTipInstantTemperature() {
uint16_t sum = 0; // 12 bit readings * 8 -> 15 bits
uint16_t readings[8];
//Looking to reject the highest outlier readings.
//As on some hardware these samples can run into the op-amp recovery time
//Once this time is up the signal stabilises quickly, so no need to reject minimums
readings[0] = hadc1.Instance->JDR1;
readings[1] = hadc1.Instance->JDR2;
readings[2] = hadc1.Instance->JDR3;
readings[3] = hadc1.Instance->JDR4;
readings[4] = hadc2.Instance->JDR1;
readings[5] = hadc2.Instance->JDR2;
readings[6] = hadc2.Instance->JDR3;
readings[7] = hadc2.Instance->JDR4;
uint8_t minID = 0, maxID = 0;
for (int i = 0; i < 8; i++) {
if (readings[i] < readings[minID])
minID = i;
else if (readings[i] > readings[maxID])
maxID = i;
}
for (int i = 0; i < 8; i++) {
if (i != maxID)
sum += readings[i];
}
sum += readings[minID]; //Duplicate the min to make up for the missing max value
return sum; // 8x over sample
}
/*
* Loopup table for the tip calibration values for
* the gain of the tip's
* This can be found by line of best fit of TipRaw on X, and TipTemp-handle on
* Y. Then take the m term * 10000
* */
uint16_t lookupTipDefaultCalValue(enum TipType tipID) {
#ifdef MODEL_TS100
switch (tipID) {
case TS_D24:
return 141;
break;
case TS_BC2:
return (133 + 129) / 2;
break;
case TS_C1:
return 133;
break;
case TS_B2:
return 133;
default:
return 132; // make this the average of all
break;
}
#else
switch (tipID) {
case TS_D25:
return 154;
break;
case TS_B02:
return 154;
break;
default:
return 154; // make this the average of all
break;
}
#endif
}
//2 second filter (ADC is PID_TIM_HZ Hz)
history<uint16_t, PID_TIM_HZ*4> rawTempFilter = { { 0 }, 0, 0 };
uint16_t getTipRawTemp(uint8_t refresh) {
if (refresh) {
uint16_t lastSample = getTipInstantTemperature();
rawTempFilter.update(lastSample);
return lastSample;
} else {
return rawTempFilter.average();
}
}
uint16_t getInputVoltageX10(uint16_t divisor, uint8_t sample) {
// ADC maximum is 32767 == 3.3V at input == 28.05V at VIN
// Therefore we can divide down from there
// Multiplying ADC max by 4 for additional calibration options,
// ideal term is 467
#define BATTFILTERDEPTH 32
static uint8_t preFillneeded = 10;
static uint32_t samples[BATTFILTERDEPTH];
static uint8_t index = 0;
if (preFillneeded) {
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
samples[i] = getADC(1);
preFillneeded--;
}
if (sample) {
samples[index] = getADC(1);
index = (index + 1) % BATTFILTERDEPTH;
}
uint32_t sum = 0;
for (uint8_t i = 0; i < BATTFILTERDEPTH; i++)
sum += samples[i];
sum /= BATTFILTERDEPTH;
return sum * 4 / divisor;
}
#ifdef MODEL_TS80
uint8_t QCMode = 0;
uint8_t QCTries = 0;
void seekQC(int16_t Vx10, uint16_t divisor) {
if (QCMode == 5)
startQC(divisor);
if (QCMode == 0)
return; // NOT connected to a QC Charger
if (Vx10 < 45)
return;
if (Vx10 > 130)
Vx10 = 130; //Cap max value at 13V
// Seek the QC to the Voltage given if this adapter supports continuous mode
// try and step towards the wanted value
// 1. Measure current voltage
int16_t vStart = getInputVoltageX10(divisor, 0);
int difference = Vx10 - vStart;
// 2. calculate ideal steps (0.2V changes)
int steps = difference / 2;
if (QCMode == 3) {
while (steps < 0) {
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET); //D+0.6
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET); //D-3.3V
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET); // D-3.3Vs
vTaskDelay(3);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET); //-0.6V
HAL_Delay(1);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL_Delay(1);
steps++;
}
while (steps > 0) {
// step once up
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
vTaskDelay(3);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
HAL_Delay(1);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
HAL_Delay(1);
steps--;
}
}
// Re-measure
/* Disabled due to nothing to test and code space of around 1k*/
#ifdef QC2_ROUND_DOWN
steps = vStart - getInputVoltageX10(195);
if (steps < 0) steps = -steps;
if (steps > (difference / 2)) {
// No continuous mode, so QC2
QCMode = 2;
// Goto nearest
if (Vx10 > 10.5) {
// request 12V
// D- = 0.6V, D+ = 0.6V
// Clamp PB3
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);// pull down D+
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
} else {
// request 9V
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
}
}
#endif
}
// Must be called after FreeRToS Starts
void startQC(uint16_t divisor) {
// Pre check that the input could be >5V already, and if so, dont both
// negotiating as someone is feeding in hv
uint16_t vin = getInputVoltageX10(divisor, 1);
if (vin > 100) {
QCMode = 1; // ALready at ~12V
return;
}
GPIO_InitTypeDef GPIO_InitStruct;
// Tries to negotiate QC for 9V
// This is a multiple step process.
// 1. Set around 0.6V on D+ for 1.25 Seconds or so
// 2. After this It should un-short D+->D- and instead add a 20k pulldown on
// D-
// 3. Now set D+ to 3.3V and D- to 0.6V to request 9V
// OR both at 0.6V for 12V request (if the adapter can do it).
// If 12V is implimented then should fallback to 9V after validation
// Step 1. We want to pull D+ to 0.6V
// Pull PB3 donwn to ground
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);// pull low to put 0.6V on D+
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);// pull low to put 0.6V on D+
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Pin = GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_14 | GPIO_PIN_13;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// Delay 1.25 seconds
uint8_t enteredQC = 0;
for (uint16_t i = 0; i < 130 && enteredQC == 0; i++) {
// HAL_Delay(10);
vTaskDelay(1);
}
// Check if D- is low to spot a QC charger
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_11) == GPIO_PIN_RESET)
enteredQC = 1;
if (enteredQC) {
// We have a QC capable charger
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pin = GPIO_PIN_10 | GPIO_PIN_8;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
// Wait for frontend ADC to stabilise
QCMode = 4;
for (uint8_t i = 0; i < 10; i++) {
if (getInputVoltageX10(divisor, 1) > 80) {
// yay we have at least QC2.0 or QC3.0
QCMode = 3; // We have at least QC2, pray for 3
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_3, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_10, GPIO_PIN_SET);
return;
}
vTaskDelay(10); // 100mS
}
QCMode = 5;
QCTries++;
if (QCTries > 10) // 10 goes to get it going
QCMode = 0;
} else {
// no QC
QCMode = 0;
}
if (QCTries > 10)
QCMode = 0;
}
// Get tip resistance in milliohms
uint32_t calculateTipR() {
static uint32_t lastRes = 0;
if (lastRes)
return lastRes;
// We inject a small current into the front end of the iron,
// By measuring the Vdrop over the tip we can calculate the resistance
// Turn PA0 into an output and drive high to inject (3.3V-0.6)/(6K8+Rtip)
// current PA0->Diode -> 6K8 -> Tip -> GND So the op-amp will amplify the
// small signal across the tip and convert this into an easily read voltage
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET); // Set low first
setTipPWM(0);
vTaskDelay(1);
uint32_t offReading = getTipRawTemp(1);
for (uint8_t i = 0; i < 49; i++) {
vTaskDelay(1); // delay to allow it to stabilize
HAL_IWDG_Refresh(&hiwdg);
offReading += getTipRawTemp(1);
}
// Turn on
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_SET); // Set hgih
vTaskDelay(1); // delay to allow it too stabilize
uint32_t onReading = getTipInstantTemperature();
for (uint8_t i = 0; i < 49; i++) {
vTaskDelay(1); // delay to allow it to stabilize
HAL_IWDG_Refresh(&hiwdg);
onReading += getTipRawTemp(1);
}
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0, GPIO_PIN_RESET); // Turn the output off finally
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
uint32_t difference = onReading - offReading;
// V = IR, therefore I = V/R
// We can divide this reading by a known "gain" to get the resulting
// resistance This was determined emperically This tip is 4.688444162 ohms,
// 4688 milliohms (Measured using 4 terminal measurement) 25x oversampling
// reads this as around 47490 Almost perfectly 10x the milliohms value This
// will drift massively with tip temp However we really only need 10x ohms
lastRes = (difference / 21) + 1; // ceil
return lastRes;
}
static unsigned int sqrt32(unsigned long n) {
unsigned int c = 0x8000;
unsigned int g = 0x8000;
for (;;) {
if (g * g > n)
g ^= c;
c >>= 1;
if (c == 0)
return g;
g |= c;
}
}
int16_t calculateMaxVoltage(uint8_t useHP) {
// This measures the tip resistance, then it calculates the appropriate
// voltage To stay under ~18W. Mosfet is "9A", so no issues there
// QC3.0 supports up to 18W, which is 2A @9V and 1.5A @12V
uint32_t milliOhms = calculateTipR();
// Check no tip
if (milliOhms > 10000)
return -1;
//Because of tolerance, if a user has asked for the higher power mode, then just goto 12V and call it a day
if (useHP)
return 120;
//
// V = sqrt(18W*R)
// Convert this to sqrt(18W)*sqrt(milli ohms)*sqrt(1/1000)
uint32_t Vx = sqrt32(milliOhms);
if (useHP)
Vx *= 1549; //sqrt(24)*sqrt(1/1000)*10000
else
Vx *= 1342; // sqrt(18) * sqrt(1/1000)*10000
// Round to nearest 200mV,
// So divide by 100 to start, to get in Vxx
Vx /= 100;
if (Vx % 10 >= 5)
Vx += 10;
Vx /= 10;
// Round to nearest increment of 2
if (Vx % 2 == 1)
Vx++;
//Because of how bad the tolerance is on detecting the tip resistance is
//Its more functional to bin this
if (Vx < 90)
Vx = 90;
else if (Vx >= 105)
Vx = 120;
return Vx;
}
#endif
volatile uint8_t pendingPWM = 0;
void setTipPWM(uint8_t pulse) {
PWMSafetyTimer = 10; // This is decremented in the handler for PWM so that the tip pwm is
// disabled if the PID task is not scheduled often enough.
pendingPWM = pulse;
}
// These are called by the HAL after the corresponding events from the system
// timers.
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
// Period has elapsed
if (htim->Instance == TIM2) {
// we want to turn on the output again
PWMSafetyTimer--;
// We decrement this safety value so that lockups in the
// scheduler will not cause the PWM to become locked in an
// active driving state.
// While we could assume this could never happen, its a small price for
// increased safety
htim2.Instance->CCR4 = pendingPWM;
if (htim2.Instance->CCR4 && PWMSafetyTimer) {
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_1);
} else {
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
}
} else if (htim->Instance == TIM1) {
// STM uses this for internal functions as a counter for timeouts
HAL_IncTick();
}
}
void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim) {
// This was a when the PWM for the output has timed out
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_4) {
HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1);
}
}
|