1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
|
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
use crate::proxy_cache::{range_filter::RangeBodyFilter, ServeFromCache};
use crate::proxy_common::*;
impl<SV> HttpProxy<SV> {
pub(crate) async fn proxy_1to1(
&self,
session: &mut Session,
client_session: &mut HttpSessionV1,
peer: &HttpPeer,
ctx: &mut SV::CTX,
) -> (bool, bool, Option<Box<Error>>)
where
SV: ProxyHttp + Send + Sync,
SV::CTX: Send + Sync,
{
client_session.read_timeout = peer.options.read_timeout;
client_session.write_timeout = peer.options.write_timeout;
// phase 2 send to upstream
let mut req = session.req_header().clone();
// Convert HTTP2 headers to H1
if req.version == Version::HTTP_2 {
req.set_version(Version::HTTP_11);
// if client has body but has no content length, add chunked encoding
// https://datatracker.ietf.org/doc/html/rfc9112#name-message-body
// "The presence of a message body in a request is signaled by a Content-Length or Transfer-Encoding header field."
if !session.is_body_empty() && session.get_header(header::CONTENT_LENGTH).is_none() {
req.insert_header(header::TRANSFER_ENCODING, "chunked")
.unwrap();
}
if session.get_header(header::HOST).is_none() {
// H2 is required to set :authority, but no necessarily header
// most H1 server expect host header, so convert
let host = req.uri.authority().map_or("", |a| a.as_str()).to_owned();
req.insert_header(header::HOST, host).unwrap();
}
// TODO: Add keepalive header for connection reuse, but this is not required per RFC
}
if session.cache.enabled() {
if let Err(e) = pingora_cache::filters::upstream::request_filter(
&mut req,
session.cache.maybe_cache_meta(),
) {
session.cache.disable(NoCacheReason::InternalError);
warn!("cache upstream filter error {}, disabling cache", e);
}
}
match self
.inner
.upstream_request_filter(session, &mut req, ctx)
.await
{
Ok(_) => { /* continue */ }
Err(e) => {
return (false, true, Some(e));
}
}
session.upstream_compression.request_filter(&req);
debug!("Sending header to upstream {:?}", req);
match client_session.write_request_header(Box::new(req)).await {
Ok(_) => { /* Continue */ }
Err(e) => {
return (false, false, Some(e.into_up()));
}
}
let (tx_upstream, rx_upstream) = mpsc::channel::<HttpTask>(TASK_BUFFER_SIZE);
let (tx_downstream, rx_downstream) = mpsc::channel::<HttpTask>(TASK_BUFFER_SIZE);
session.as_mut().enable_retry_buffering();
// start bi-directional streaming
let ret = tokio::try_join!(
self.proxy_handle_downstream(session, tx_downstream, rx_upstream, ctx),
self.proxy_handle_upstream(client_session, tx_upstream, rx_downstream),
);
match ret {
Ok((downstream_can_reuse, _upstream)) => (downstream_can_reuse, true, None),
Err(e) => (false, false, Some(e)),
}
}
pub(crate) async fn proxy_to_h1_upstream(
&self,
session: &mut Session,
client_session: &mut HttpSessionV1,
reused: bool,
peer: &HttpPeer,
ctx: &mut SV::CTX,
) -> (bool, bool, Option<Box<Error>>)
// (reuse_server, reuse_client, error)
where
SV: ProxyHttp + Send + Sync,
SV::CTX: Send + Sync,
{
#[cfg(windows)]
let raw = client_session.id() as std::os::windows::io::RawSocket;
#[cfg(unix)]
let raw = client_session.id();
if let Err(e) = self
.inner
.connected_to_upstream(
session,
reused,
peer,
raw,
Some(client_session.digest()),
ctx,
)
.await
{
return (false, false, Some(e));
}
let (server_session_reuse, client_session_reuse, error) =
self.proxy_1to1(session, client_session, peer, ctx).await;
(server_session_reuse, client_session_reuse, error)
}
async fn proxy_handle_upstream(
&self,
client_session: &mut HttpSessionV1,
tx: mpsc::Sender<HttpTask>,
mut rx: mpsc::Receiver<HttpTask>,
) -> Result<()>
where
SV: ProxyHttp + Send + Sync,
SV::CTX: Send + Sync,
{
let mut request_done = false;
let mut response_done = false;
/* duplex mode, wait for either to complete */
while !request_done || !response_done {
tokio::select! {
res = client_session.read_response_task(), if !response_done => {
match res {
Ok(task) => {
response_done = task.is_end();
let result = tx.send(task)
.await.or_err(
InternalError,
"Failed to send upstream header to pipe");
// If the request is upgraded, the downstream pipe can early exit
// when the downstream connection is closed.
// In that case, this function should ignore that the pipe is closed.
// So that this function could read the rest events from rx including
// the closure, then exit.
if result.is_err() && !client_session.is_upgrade_req() {
return result;
}
},
Err(e) => {
// Push the error to downstream and then quit
// Don't care if send fails: downstream already gone
let _ = tx.send(HttpTask::Failed(e.into_up())).await;
// Downstream should consume all remaining data and handle the error
return Ok(())
}
}
},
body = rx.recv(), if !request_done => {
request_done = send_body_to1(client_session, body).await?;
// An upgraded request is terminated when either side is done
if request_done && client_session.is_upgrade_req() {
response_done = true;
}
},
else => {
// this shouldn't be reached as the while loop would already exit
break;
}
}
}
Ok(())
}
// todo use this function to replace bidirection_1to2()
// returns whether this server (downstream) session can be reused
async fn proxy_handle_downstream(
&self,
session: &mut Session,
tx: mpsc::Sender<HttpTask>,
mut rx: mpsc::Receiver<HttpTask>,
ctx: &mut SV::CTX,
) -> Result<bool>
where
SV: ProxyHttp + Send + Sync,
SV::CTX: Send + Sync,
{
let mut downstream_state = DownstreamStateMachine::new(session.as_mut().is_body_done());
let buffer = session.as_ref().get_retry_buffer();
// retry, send buffer if it exists or body empty
if buffer.is_some() || session.as_mut().is_body_empty() {
let send_permit = tx
.reserve()
.await
.or_err(InternalError, "reserving body pipe")?;
self.send_body_to_pipe(
session,
buffer,
downstream_state.is_done(),
send_permit,
ctx,
)
.await?;
}
let mut response_state = ResponseStateMachine::new();
// these two below can be wrapped into an internal ctx
// use cache when upstream revalidates (or TODO: error)
let mut serve_from_cache = proxy_cache::ServeFromCache::new();
let mut range_body_filter = proxy_cache::range_filter::RangeBodyFilter::new();
/* duplex mode without caching
* Read body from downstream while reading response from upstream
* If response is done, only read body from downstream
* If request is done, read response from upstream while idling downstream (to close quickly)
* If both are done, quit the loop
*
* With caching + but without partial read support
* Similar to above, cache admission write happen when the data is write to downstream
*
* With caching + partial read support
* A. Read upstream response and write to cache
* B. Read data from cache and send to downstream
* If B fails (usually downstream close), continue A.
* If A fails, exit with error.
* If both are done, quit the loop
* Usually there is no request body to read for cacheable request
*/
while !downstream_state.is_done() || !response_state.is_done() {
// reserve tx capacity ahead to avoid deadlock, see below
let send_permit = tx
.try_reserve()
.or_err(InternalError, "try_reserve() body pipe for upstream");
tokio::select! {
// only try to send to pipe if there is capacity to avoid deadlock
// Otherwise deadlock could happen if both upstream and downstream are blocked
// on sending to their corresponding pipes which are both full.
body = session.downstream_session.read_body_or_idle(downstream_state.is_done()),
if downstream_state.can_poll() && send_permit.is_ok() => {
debug!("downstream event");
let body = match body {
Ok(b) => b,
Err(e) => {
if serve_from_cache.is_miss() {
// ignore downstream error so that upstream can continue to write cache
downstream_state.to_errored();
warn!(
"Downstream Error ignored during caching: {}, {}",
e,
self.inner.request_summary(session, ctx)
);
continue;
} else {
return Err(e.into_down());
}
}
};
// If the request is websocket, `None` body means the request is closed.
// Set the response to be done as well so that the request completes normally.
if body.is_none() && session.is_upgrade_req() {
response_state.maybe_set_upstream_done(true);
}
// TODO: consider just drain this if serve_from_cache is set
let is_body_done = session.is_body_done();
let request_done = self.send_body_to_pipe(
session,
body,
is_body_done,
send_permit.unwrap(), // safe because we checked is_ok()
ctx,
)
.await?;
downstream_state.maybe_finished(request_done);
},
_ = tx.reserve(), if downstream_state.is_reading() && send_permit.is_err() => {
// If tx is closed, the upstream has already finished its job.
downstream_state.maybe_finished(tx.is_closed());
debug!("waiting for permit {send_permit:?}, upstream closed {}", tx.is_closed());
/* No permit, wait on more capacity to avoid starving.
* Otherwise this select only blocks on rx, which might send no data
* before the entire body is uploaded.
* once more capacity arrives we just loop back
*/
},
task = rx.recv(), if !response_state.upstream_done() => {
debug!("upstream event: {:?}", task);
if let Some(t) = task {
if serve_from_cache.should_discard_upstream() {
// just drain, do we need to do anything else?
continue;
}
// pull as many tasks as we can
let mut tasks = Vec::with_capacity(TASK_BUFFER_SIZE);
tasks.push(t);
while let Some(maybe_task) = rx.recv().now_or_never() {
debug!("upstream event now: {:?}", maybe_task);
if let Some(t) = maybe_task {
tasks.push(t);
} else {
break; // upstream closed
}
}
/* run filters before sending to downstream */
let mut filtered_tasks = Vec::with_capacity(TASK_BUFFER_SIZE);
for mut t in tasks {
if self.revalidate_or_stale(session, &mut t, ctx).await {
serve_from_cache.enable();
response_state.enable_cached_response();
// skip downstream filtering entirely as the 304 will not be sent
break;
}
session.upstream_compression.response_filter(&mut t);
let task = self.h1_response_filter(session, t, ctx,
&mut serve_from_cache,
&mut range_body_filter, false).await?;
if serve_from_cache.is_miss_header() {
response_state.enable_cached_response();
}
// check error and abort
// otherwise the error is surfaced via write_response_tasks()
if !serve_from_cache.should_send_to_downstream() {
if let HttpTask::Failed(e) = task {
return Err(e);
}
}
filtered_tasks.push(task);
}
if !serve_from_cache.should_send_to_downstream() {
// TODO: need to derive response_done from filtered_tasks in case downstream failed already
continue;
}
// set to downstream
let response_done = session.write_response_tasks(filtered_tasks).await?;
response_state.maybe_set_upstream_done(response_done);
// unsuccessful upgrade response may force the request done
downstream_state.maybe_finished(session.is_body_done());
} else {
debug!("empty upstream event");
response_state.maybe_set_upstream_done(true);
}
},
task = serve_from_cache.next_http_task(&mut session.cache),
if !response_state.cached_done() && !downstream_state.is_errored() && serve_from_cache.is_on() => {
let task = self.h1_response_filter(session, task?, ctx,
&mut serve_from_cache,
&mut range_body_filter, true).await?;
debug!("serve_from_cache task {task:?}");
match session.write_response_tasks(vec![task]).await {
Ok(b) => response_state.maybe_set_cache_done(b),
Err(e) => if serve_from_cache.is_miss() {
// give up writing to downstream but wait for upstream cache write to finish
downstream_state.to_errored();
response_state.maybe_set_cache_done(true);
warn!(
"Downstream Error ignored during caching: {}, {}",
e,
self.inner.request_summary(session, ctx)
);
continue;
} else {
return Err(e);
}
}
if response_state.cached_done() {
if let Err(e) = session.cache.finish_hit_handler().await {
warn!("Error during finish_hit_handler: {}", e);
}
}
}
else => {
break;
}
}
}
let mut reuse_downstream = !downstream_state.is_errored();
if reuse_downstream {
match session.as_mut().finish_body().await {
Ok(_) => {
debug!("finished sending body to downstream");
}
Err(e) => {
error!("Error finish sending body to downstream: {}", e);
reuse_downstream = false;
}
}
}
Ok(reuse_downstream)
}
async fn h1_response_filter(
&self,
session: &mut Session,
mut task: HttpTask,
ctx: &mut SV::CTX,
serve_from_cache: &mut ServeFromCache,
range_body_filter: &mut RangeBodyFilter,
from_cache: bool, // are the task from cache already
) -> Result<HttpTask>
where
SV: ProxyHttp + Send + Sync,
SV::CTX: Send + Sync,
{
// skip caching if already served from cache
if !from_cache {
self.upstream_filter(session, &mut task, ctx)?;
// cache the original response before any downstream transformation
// requests that bypassed cache still need to run filters to see if the response has become cacheable
if session.cache.enabled() || session.cache.bypassing() {
if let Err(e) = self
.cache_http_task(session, &task, ctx, serve_from_cache)
.await
{
session.cache.disable(NoCacheReason::StorageError);
if serve_from_cache.is_miss_body() {
// if the response stream cache body during miss but write fails, it has to
// give up the entire request
return Err(e);
} else {
// otherwise, continue processing the response
warn!(
"Fail to cache response: {}, {}",
e,
self.inner.request_summary(session, ctx)
);
}
}
}
if !serve_from_cache.should_send_to_downstream() {
return Ok(task);
}
} // else: cached/local response, no need to trigger upstream filters and caching
match task {
HttpTask::Header(mut header, end) => {
/* Downstream revalidation/range, only needed when cache is on because otherwise origin
* will handle it */
// TODO: if cache is disabled during response phase, we should still do the filter
if session.cache.enabled() {
self.downstream_response_conditional_filter(
serve_from_cache,
session,
&mut header,
ctx,
);
if !session.ignore_downstream_range {
let range_type = proxy_cache::range_filter::range_header_filter(
session.req_header(),
&mut header,
);
range_body_filter.set(range_type);
}
}
/* Convert HTTP 1.0 style response to chunked encoding so that we don't
* have to close the downstream connection */
// these status codes / method cannot have body, so no need to add chunked encoding
let no_body = session.req_header().method == http::method::Method::HEAD
|| matches!(header.status.as_u16(), 204 | 304);
if !no_body
&& !header.status.is_informational()
&& header
.headers
.get(http::header::TRANSFER_ENCODING)
.is_none()
&& header.headers.get(http::header::CONTENT_LENGTH).is_none()
&& !end
{
header.insert_header(http::header::TRANSFER_ENCODING, "chunked")?;
}
match self.inner.response_filter(session, &mut header, ctx).await {
Ok(_) => Ok(HttpTask::Header(header, end)),
Err(e) => Err(e),
}
}
HttpTask::Body(data, end) => {
let mut data = range_body_filter.filter_body(data);
if let Some(duration) = self
.inner
.response_body_filter(session, &mut data, end, ctx)?
{
trace!("delaying response for {:?}", duration);
time::sleep(duration).await;
}
Ok(HttpTask::Body(data, end))
}
HttpTask::Trailer(h) => Ok(HttpTask::Trailer(h)), // TODO: support trailers for h1
HttpTask::Done => Ok(task),
HttpTask::Failed(_) => Ok(task), // Do nothing just pass the error down
}
}
// TODO:: use this function to replace send_body_to2
async fn send_body_to_pipe(
&self,
session: &mut Session,
mut data: Option<Bytes>,
end_of_body: bool,
tx: mpsc::Permit<'_, HttpTask>,
ctx: &mut SV::CTX,
) -> Result<bool>
where
SV: ProxyHttp + Send + Sync,
SV::CTX: Send + Sync,
{
// None: end of body
// this var is to signal if downstream finish sending the body, which shouldn't be
// affected by the request_body_filter
let end_of_body = end_of_body || data.is_none();
session
.downstream_modules_ctx
.request_body_filter(&mut data, end_of_body)
.await?;
self.inner
.request_body_filter(session, &mut data, end_of_body, ctx)
.await?;
// the flag to signal to upstream
let upstream_end_of_body = end_of_body || data.is_none();
/* It is normal to get 0 bytes because of multi-chunk or request_body_filter decides not to
* output anything yet.
* Don't write 0 bytes to the network since it will be
* treated as the terminating chunk */
if !upstream_end_of_body && data.as_ref().map_or(false, |d| d.is_empty()) {
return Ok(false);
}
debug!(
"Read {} bytes body from downstream",
data.as_ref().map_or(-1, |d| d.len() as isize)
);
tx.send(HttpTask::Body(data, upstream_end_of_body));
Ok(end_of_body)
}
}
pub(crate) async fn send_body_to1(
client_session: &mut HttpSessionV1,
recv_task: Option<HttpTask>,
) -> Result<bool> {
let body_done;
if let Some(task) = recv_task {
match task {
HttpTask::Body(data, end) => {
body_done = end;
if let Some(d) = data {
let m = client_session.write_body(&d).await;
match m {
Ok(m) => match m {
Some(n) => {
debug!("Write {} bytes body to upstream", n);
}
None => {
warn!("Upstream body is already finished. Nothing to write");
}
},
Err(e) => {
return e.into_up().into_err();
}
}
}
}
_ => {
// should never happen, sender only sends body
warn!("Unexpected task sent to upstream");
body_done = true;
}
}
} else {
// sender dropped
body_done = true;
}
if body_done {
match client_session.finish_body().await {
Ok(_) => {
debug!("finish sending body to upstream");
Ok(true)
}
Err(e) => e.into_up().into_err(),
}
} else {
Ok(false)
}
}
|