1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
"""
The main purpose is to enhance stdlib dataclasses by adding validation
A pydantic dataclass can be generated from scratch or from a stdlib one.
Behind the scene, a pydantic dataclass is just like a regular one on which we attach
a `BaseModel` and magic methods to trigger the validation of the data.
`__init__` and `__post_init__` are hence overridden and have extra logic to be
able to validate input data.
When a pydantic dataclass is generated from scratch, it's just a plain dataclass
with validation triggered at initialization
The tricky part if for stdlib dataclasses that are converted after into pydantic ones e.g.
```py
@dataclasses.dataclass
class M:
x: int
ValidatedM = pydantic.dataclasses.dataclass(M)
```
We indeed still want to support equality, hashing, repr, ... as if it was the stdlib one!
```py
assert isinstance(ValidatedM(x=1), M)
assert ValidatedM(x=1) == M(x=1)
```
This means we **don't want to create a new dataclass that inherits from it**
The trick is to create a wrapper around `M` that will act as a proxy to trigger
validation without altering default `M` behaviour.
"""
import copy
import dataclasses
import sys
from contextlib import contextmanager
from functools import wraps
try:
from functools import cached_property
except ImportError:
# cached_property available only for python3.8+
pass
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Dict, Generator, Optional, Type, TypeVar, Union, overload
from typing_extensions import dataclass_transform
from .class_validators import gather_all_validators
from .config import BaseConfig, ConfigDict, Extra, get_config
from .error_wrappers import ValidationError
from .errors import DataclassTypeError
from .fields import Field, FieldInfo, Required, Undefined
from .main import create_model, validate_model
from .utils import ClassAttribute
if TYPE_CHECKING:
from .main import BaseModel
from .typing import CallableGenerator, NoArgAnyCallable
DataclassT = TypeVar('DataclassT', bound='Dataclass')
DataclassClassOrWrapper = Union[Type['Dataclass'], 'DataclassProxy']
class Dataclass:
# stdlib attributes
__dataclass_fields__: ClassVar[Dict[str, Any]]
__dataclass_params__: ClassVar[Any] # in reality `dataclasses._DataclassParams`
__post_init__: ClassVar[Callable[..., None]]
# Added by pydantic
__pydantic_run_validation__: ClassVar[bool]
__post_init_post_parse__: ClassVar[Callable[..., None]]
__pydantic_initialised__: ClassVar[bool]
__pydantic_model__: ClassVar[Type[BaseModel]]
__pydantic_validate_values__: ClassVar[Callable[['Dataclass'], None]]
__pydantic_has_field_info_default__: ClassVar[bool] # whether a `pydantic.Field` is used as default value
def __init__(self, *args: object, **kwargs: object) -> None:
pass
@classmethod
def __get_validators__(cls: Type['Dataclass']) -> 'CallableGenerator':
pass
@classmethod
def __validate__(cls: Type['DataclassT'], v: Any) -> 'DataclassT':
pass
__all__ = [
'dataclass',
'set_validation',
'create_pydantic_model_from_dataclass',
'is_builtin_dataclass',
'make_dataclass_validator',
]
_T = TypeVar('_T')
if sys.version_info >= (3, 10):
@dataclass_transform(field_specifiers=(dataclasses.field, Field))
@overload
def dataclass(
*,
init: bool = True,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool = False,
config: Union[ConfigDict, Type[object], None] = None,
validate_on_init: Optional[bool] = None,
use_proxy: Optional[bool] = None,
kw_only: bool = ...,
) -> Callable[[Type[_T]], 'DataclassClassOrWrapper']:
...
@dataclass_transform(field_specifiers=(dataclasses.field, Field))
@overload
def dataclass(
_cls: Type[_T],
*,
init: bool = True,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool = False,
config: Union[ConfigDict, Type[object], None] = None,
validate_on_init: Optional[bool] = None,
use_proxy: Optional[bool] = None,
kw_only: bool = ...,
) -> 'DataclassClassOrWrapper':
...
else:
@dataclass_transform(field_specifiers=(dataclasses.field, Field))
@overload
def dataclass(
*,
init: bool = True,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool = False,
config: Union[ConfigDict, Type[object], None] = None,
validate_on_init: Optional[bool] = None,
use_proxy: Optional[bool] = None,
) -> Callable[[Type[_T]], 'DataclassClassOrWrapper']:
...
@dataclass_transform(field_specifiers=(dataclasses.field, Field))
@overload
def dataclass(
_cls: Type[_T],
*,
init: bool = True,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool = False,
config: Union[ConfigDict, Type[object], None] = None,
validate_on_init: Optional[bool] = None,
use_proxy: Optional[bool] = None,
) -> 'DataclassClassOrWrapper':
...
@dataclass_transform(field_specifiers=(dataclasses.field, Field))
def dataclass(
_cls: Optional[Type[_T]] = None,
*,
init: bool = True,
repr: bool = True,
eq: bool = True,
order: bool = False,
unsafe_hash: bool = False,
frozen: bool = False,
config: Union[ConfigDict, Type[object], None] = None,
validate_on_init: Optional[bool] = None,
use_proxy: Optional[bool] = None,
kw_only: bool = False,
) -> Union[Callable[[Type[_T]], 'DataclassClassOrWrapper'], 'DataclassClassOrWrapper']:
"""
Like the python standard lib dataclasses but with type validation.
The result is either a pydantic dataclass that will validate input data
or a wrapper that will trigger validation around a stdlib dataclass
to avoid modifying it directly
"""
the_config = get_config(config)
def wrap(cls: Type[Any]) -> 'DataclassClassOrWrapper':
should_use_proxy = (
use_proxy
if use_proxy is not None
else (
is_builtin_dataclass(cls)
and (cls.__bases__[0] is object or set(dir(cls)) == set(dir(cls.__bases__[0])))
)
)
if should_use_proxy:
dc_cls_doc = ''
dc_cls = DataclassProxy(cls)
default_validate_on_init = False
else:
dc_cls_doc = cls.__doc__ or '' # needs to be done before generating dataclass
if sys.version_info >= (3, 10):
dc_cls = dataclasses.dataclass(
cls,
init=init,
repr=repr,
eq=eq,
order=order,
unsafe_hash=unsafe_hash,
frozen=frozen,
kw_only=kw_only,
)
else:
dc_cls = dataclasses.dataclass( # type: ignore
cls, init=init, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen
)
default_validate_on_init = True
should_validate_on_init = default_validate_on_init if validate_on_init is None else validate_on_init
_add_pydantic_validation_attributes(cls, the_config, should_validate_on_init, dc_cls_doc)
dc_cls.__pydantic_model__.__try_update_forward_refs__(**{cls.__name__: cls})
return dc_cls
if _cls is None:
return wrap
return wrap(_cls)
@contextmanager
def set_validation(cls: Type['DataclassT'], value: bool) -> Generator[Type['DataclassT'], None, None]:
original_run_validation = cls.__pydantic_run_validation__
try:
cls.__pydantic_run_validation__ = value
yield cls
finally:
cls.__pydantic_run_validation__ = original_run_validation
class DataclassProxy:
__slots__ = '__dataclass__'
def __init__(self, dc_cls: Type['Dataclass']) -> None:
object.__setattr__(self, '__dataclass__', dc_cls)
def __call__(self, *args: Any, **kwargs: Any) -> Any:
with set_validation(self.__dataclass__, True):
return self.__dataclass__(*args, **kwargs)
def __getattr__(self, name: str) -> Any:
return getattr(self.__dataclass__, name)
def __setattr__(self, __name: str, __value: Any) -> None:
return setattr(self.__dataclass__, __name, __value)
def __instancecheck__(self, instance: Any) -> bool:
return isinstance(instance, self.__dataclass__)
def __copy__(self) -> 'DataclassProxy':
return DataclassProxy(copy.copy(self.__dataclass__))
def __deepcopy__(self, memo: Any) -> 'DataclassProxy':
return DataclassProxy(copy.deepcopy(self.__dataclass__, memo))
def _add_pydantic_validation_attributes( # noqa: C901 (ignore complexity)
dc_cls: Type['Dataclass'],
config: Type[BaseConfig],
validate_on_init: bool,
dc_cls_doc: str,
) -> None:
"""
We need to replace the right method. If no `__post_init__` has been set in the stdlib dataclass
it won't even exist (code is generated on the fly by `dataclasses`)
By default, we run validation after `__init__` or `__post_init__` if defined
"""
init = dc_cls.__init__
@wraps(init)
def handle_extra_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None:
if config.extra == Extra.ignore:
init(self, *args, **{k: v for k, v in kwargs.items() if k in self.__dataclass_fields__})
elif config.extra == Extra.allow:
for k, v in kwargs.items():
self.__dict__.setdefault(k, v)
init(self, *args, **{k: v for k, v in kwargs.items() if k in self.__dataclass_fields__})
else:
init(self, *args, **kwargs)
if hasattr(dc_cls, '__post_init__'):
try:
post_init = dc_cls.__post_init__.__wrapped__ # type: ignore[attr-defined]
except AttributeError:
post_init = dc_cls.__post_init__
@wraps(post_init)
def new_post_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None:
if config.post_init_call == 'before_validation':
post_init(self, *args, **kwargs)
if self.__class__.__pydantic_run_validation__:
self.__pydantic_validate_values__()
if hasattr(self, '__post_init_post_parse__'):
self.__post_init_post_parse__(*args, **kwargs)
if config.post_init_call == 'after_validation':
post_init(self, *args, **kwargs)
setattr(dc_cls, '__init__', handle_extra_init)
setattr(dc_cls, '__post_init__', new_post_init)
else:
@wraps(init)
def new_init(self: 'Dataclass', *args: Any, **kwargs: Any) -> None:
handle_extra_init(self, *args, **kwargs)
if self.__class__.__pydantic_run_validation__:
self.__pydantic_validate_values__()
if hasattr(self, '__post_init_post_parse__'):
# We need to find again the initvars. To do that we use `__dataclass_fields__` instead of
# public method `dataclasses.fields`
# get all initvars and their default values
initvars_and_values: Dict[str, Any] = {}
for i, f in enumerate(self.__class__.__dataclass_fields__.values()):
if f._field_type is dataclasses._FIELD_INITVAR: # type: ignore[attr-defined]
try:
# set arg value by default
initvars_and_values[f.name] = args[i]
except IndexError:
initvars_and_values[f.name] = kwargs.get(f.name, f.default)
self.__post_init_post_parse__(**initvars_and_values)
setattr(dc_cls, '__init__', new_init)
setattr(dc_cls, '__pydantic_run_validation__', ClassAttribute('__pydantic_run_validation__', validate_on_init))
setattr(dc_cls, '__pydantic_initialised__', False)
setattr(dc_cls, '__pydantic_model__', create_pydantic_model_from_dataclass(dc_cls, config, dc_cls_doc))
setattr(dc_cls, '__pydantic_validate_values__', _dataclass_validate_values)
setattr(dc_cls, '__validate__', classmethod(_validate_dataclass))
setattr(dc_cls, '__get_validators__', classmethod(_get_validators))
if dc_cls.__pydantic_model__.__config__.validate_assignment and not dc_cls.__dataclass_params__.frozen:
setattr(dc_cls, '__setattr__', _dataclass_validate_assignment_setattr)
def _get_validators(cls: 'DataclassClassOrWrapper') -> 'CallableGenerator':
yield cls.__validate__
def _validate_dataclass(cls: Type['DataclassT'], v: Any) -> 'DataclassT':
with set_validation(cls, True):
if isinstance(v, cls):
v.__pydantic_validate_values__()
return v
elif isinstance(v, (list, tuple)):
return cls(*v)
elif isinstance(v, dict):
return cls(**v)
else:
raise DataclassTypeError(class_name=cls.__name__)
def create_pydantic_model_from_dataclass(
dc_cls: Type['Dataclass'],
config: Type[Any] = BaseConfig,
dc_cls_doc: Optional[str] = None,
) -> Type['BaseModel']:
field_definitions: Dict[str, Any] = {}
for field in dataclasses.fields(dc_cls):
default: Any = Undefined
default_factory: Optional['NoArgAnyCallable'] = None
field_info: FieldInfo
if field.default is not dataclasses.MISSING:
default = field.default
elif field.default_factory is not dataclasses.MISSING:
default_factory = field.default_factory
else:
default = Required
if isinstance(default, FieldInfo):
field_info = default
dc_cls.__pydantic_has_field_info_default__ = True
else:
field_info = Field(default=default, default_factory=default_factory, **field.metadata)
field_definitions[field.name] = (field.type, field_info)
validators = gather_all_validators(dc_cls)
model: Type['BaseModel'] = create_model(
dc_cls.__name__,
__config__=config,
__module__=dc_cls.__module__,
__validators__=validators,
__cls_kwargs__={'__resolve_forward_refs__': False},
**field_definitions,
)
model.__doc__ = dc_cls_doc if dc_cls_doc is not None else dc_cls.__doc__ or ''
return model
if sys.version_info >= (3, 8):
def _is_field_cached_property(obj: 'Dataclass', k: str) -> bool:
return isinstance(getattr(type(obj), k, None), cached_property)
else:
def _is_field_cached_property(obj: 'Dataclass', k: str) -> bool:
return False
def _dataclass_validate_values(self: 'Dataclass') -> None:
# validation errors can occur if this function is called twice on an already initialised dataclass.
# for example if Extra.forbid is enabled, it would consider __pydantic_initialised__ an invalid extra property
if getattr(self, '__pydantic_initialised__'):
return
if getattr(self, '__pydantic_has_field_info_default__', False):
# We need to remove `FieldInfo` values since they are not valid as input
# It's ok to do that because they are obviously the default values!
input_data = {
k: v
for k, v in self.__dict__.items()
if not (isinstance(v, FieldInfo) or _is_field_cached_property(self, k))
}
else:
input_data = {k: v for k, v in self.__dict__.items() if not _is_field_cached_property(self, k)}
d, _, validation_error = validate_model(self.__pydantic_model__, input_data, cls=self.__class__)
if validation_error:
raise validation_error
self.__dict__.update(d)
object.__setattr__(self, '__pydantic_initialised__', True)
def _dataclass_validate_assignment_setattr(self: 'Dataclass', name: str, value: Any) -> None:
if self.__pydantic_initialised__:
d = dict(self.__dict__)
d.pop(name, None)
known_field = self.__pydantic_model__.__fields__.get(name, None)
if known_field:
value, error_ = known_field.validate(value, d, loc=name, cls=self.__class__)
if error_:
raise ValidationError([error_], self.__class__)
object.__setattr__(self, name, value)
def is_builtin_dataclass(_cls: Type[Any]) -> bool:
"""
Whether a class is a stdlib dataclass
(useful to discriminated a pydantic dataclass that is actually a wrapper around a stdlib dataclass)
we check that
- `_cls` is a dataclass
- `_cls` is not a processed pydantic dataclass (with a basemodel attached)
- `_cls` is not a pydantic dataclass inheriting directly from a stdlib dataclass
e.g.
```
@dataclasses.dataclass
class A:
x: int
@pydantic.dataclasses.dataclass
class B(A):
y: int
```
In this case, when we first check `B`, we make an extra check and look at the annotations ('y'),
which won't be a superset of all the dataclass fields (only the stdlib fields i.e. 'x')
"""
return (
dataclasses.is_dataclass(_cls)
and not hasattr(_cls, '__pydantic_model__')
and set(_cls.__dataclass_fields__).issuperset(set(getattr(_cls, '__annotations__', {})))
)
def make_dataclass_validator(dc_cls: Type['Dataclass'], config: Type[BaseConfig]) -> 'CallableGenerator':
"""
Create a pydantic.dataclass from a builtin dataclass to add type validation
and yield the validators
It retrieves the parameters of the dataclass and forwards them to the newly created dataclass
"""
yield from _get_validators(dataclass(dc_cls, config=config, use_proxy=True))
|