aboutsummaryrefslogtreecommitdiffhomepage
path: root/libs/tqdm/gui.py
blob: 35f5c5e55a77315241b749b0aa74ac9a8873dab3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
"""
GUI progressbar decorator for iterators.
Includes a default (x)range iterator printing to stderr.

Usage:
  >>> from tqdm.gui import trange[, tqdm]
  >>> for i in trange(10): #same as: for i in tqdm(xrange(10))
  ...     ...
"""
# future division is important to divide integers and get as
# a result precise floating numbers (instead of truncated int)
from __future__ import division, absolute_import
# import compatibility functions and utilities
from .utils import _range
# to inherit from the tqdm class
from .std import tqdm as std_tqdm
from .std import TqdmExperimentalWarning
from warnings import warn


__author__ = {"github.com/": ["casperdcl", "lrq3000"]}
__all__ = ['tqdm_gui', 'tgrange', 'tqdm', 'trange']


class tqdm_gui(std_tqdm):  # pragma: no cover
    """
    Experimental GUI version of tqdm!
    """

    # TODO: @classmethod: write() on GUI?

    def __init__(self, *args, **kwargs):
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        from collections import deque
        kwargs['gui'] = True

        super(tqdm_gui, self).__init__(*args, **kwargs)

        # Initialize the GUI display
        if self.disable or not kwargs['gui']:
            return

        warn('GUI is experimental/alpha', TqdmExperimentalWarning, stacklevel=2)
        self.mpl = mpl
        self.plt = plt
        self.sp = None

        # Remember if external environment uses toolbars
        self.toolbar = self.mpl.rcParams['toolbar']
        self.mpl.rcParams['toolbar'] = 'None'

        self.mininterval = max(self.mininterval, 0.5)
        self.fig, ax = plt.subplots(figsize=(9, 2.2))
        # self.fig.subplots_adjust(bottom=0.2)
        total = len(self)
        if total is not None:
            self.xdata = []
            self.ydata = []
            self.zdata = []
        else:
            self.xdata = deque([])
            self.ydata = deque([])
            self.zdata = deque([])
        self.line1, = ax.plot(self.xdata, self.ydata, color='b')
        self.line2, = ax.plot(self.xdata, self.zdata, color='k')
        ax.set_ylim(0, 0.001)
        if total is not None:
            ax.set_xlim(0, 100)
            ax.set_xlabel('percent')
            self.fig.legend((self.line1, self.line2), ('cur', 'est'),
                            loc='center right')
            # progressbar
            self.hspan = plt.axhspan(0, 0.001,
                                     xmin=0, xmax=0, color='g')
        else:
            # ax.set_xlim(-60, 0)
            ax.set_xlim(0, 60)
            ax.invert_xaxis()
            ax.set_xlabel('seconds')
            ax.legend(('cur', 'est'), loc='lower left')
        ax.grid()
        # ax.set_xlabel('seconds')
        ax.set_ylabel((self.unit if self.unit else 'it') + '/s')
        if self.unit_scale:
            plt.ticklabel_format(style='sci', axis='y',
                                 scilimits=(0, 0))
            ax.yaxis.get_offset_text().set_x(-0.15)

        # Remember if external environment is interactive
        self.wasion = plt.isinteractive()
        plt.ion()
        self.ax = ax

    def __iter__(self):
        # TODO: somehow allow the following:
        # if not self.gui:
        #   return super(tqdm_gui, self).__iter__()
        iterable = self.iterable
        if self.disable:
            for obj in iterable:
                yield obj
            return

        # ncols = self.ncols
        mininterval = self.mininterval
        maxinterval = self.maxinterval
        miniters = self.miniters
        dynamic_miniters = self.dynamic_miniters
        last_print_t = self.last_print_t
        last_print_n = self.last_print_n
        n = self.n
        # dynamic_ncols = self.dynamic_ncols
        smoothing = self.smoothing
        avg_time = self.avg_time
        time = self._time

        for obj in iterable:
            yield obj
            # Update and possibly print the progressbar.
            # Note: does not call self.update(1) for speed optimisation.
            n += 1
            # check counter first to avoid calls to time()
            if n - last_print_n >= self.miniters:
                miniters = self.miniters  # watch monitoring thread changes
                delta_t = time() - last_print_t
                if delta_t >= mininterval:
                    cur_t = time()
                    delta_it = n - last_print_n
                    # EMA (not just overall average)
                    if smoothing and delta_t and delta_it:
                        rate = delta_t / delta_it
                        avg_time = self.ema(rate, avg_time, smoothing)
                        self.avg_time = avg_time

                    self.n = n
                    self.display()

                    # If no `miniters` was specified, adjust automatically
                    # to the max iteration rate seen so far between 2 prints
                    if dynamic_miniters:
                        if maxinterval and delta_t >= maxinterval:
                            # Adjust miniters to time interval by rule of 3
                            if mininterval:
                                # Set miniters to correspond to mininterval
                                miniters = delta_it * mininterval / delta_t
                            else:
                                # Set miniters to correspond to maxinterval
                                miniters = delta_it * maxinterval / delta_t
                        elif smoothing:
                            # EMA-weight miniters to converge
                            # towards the timeframe of mininterval
                            rate = delta_it
                            if mininterval and delta_t:
                                rate *= mininterval / delta_t
                            miniters = self.ema(rate, miniters, smoothing)
                        else:
                            # Maximum nb of iterations between 2 prints
                            miniters = max(miniters, delta_it)

                    # Store old values for next call
                    self.n = self.last_print_n = last_print_n = n
                    self.last_print_t = last_print_t = cur_t
                    self.miniters = miniters

        # Closing the progress bar.
        # Update some internal variables for close().
        self.last_print_n = last_print_n
        self.n = n
        self.miniters = miniters
        self.close()

    def update(self, n=1):
        # if not self.gui:
        #   return super(tqdm_gui, self).close()
        if self.disable:
            return

        if n < 0:
            self.last_print_n += n  # for auto-refresh logic to work
        self.n += n

        # check counter first to reduce calls to time()
        if self.n - self.last_print_n >= self.miniters:
            delta_t = self._time() - self.last_print_t
            if delta_t >= self.mininterval:
                cur_t = self._time()
                delta_it = self.n - self.last_print_n  # >= n
                # elapsed = cur_t - self.start_t
                # EMA (not just overall average)
                if self.smoothing and delta_t and delta_it:
                    rate = delta_t / delta_it
                    self.avg_time = self.ema(
                        rate, self.avg_time, self.smoothing)

                self.display()

                # If no `miniters` was specified, adjust automatically to the
                # maximum iteration rate seen so far between two prints.
                # e.g.: After running `tqdm.update(5)`, subsequent
                # calls to `tqdm.update()` will only cause an update after
                # at least 5 more iterations.
                if self.dynamic_miniters:
                    if self.maxinterval and delta_t >= self.maxinterval:
                        if self.mininterval:
                            self.miniters = delta_it * self.mininterval \
                                / delta_t
                        else:
                            self.miniters = delta_it * self.maxinterval \
                                / delta_t
                    elif self.smoothing:
                        self.miniters = self.smoothing * delta_it * \
                            (self.mininterval / delta_t
                             if self.mininterval and delta_t
                             else 1) + \
                            (1 - self.smoothing) * self.miniters
                    else:
                        self.miniters = max(self.miniters, delta_it)

                # Store old values for next call
                self.last_print_n = self.n
                self.last_print_t = cur_t

    def close(self):
        # if not self.gui:
        #   return super(tqdm_gui, self).close()
        if self.disable:
            return

        self.disable = True

        with self.get_lock():
            self._instances.remove(self)

        # Restore toolbars
        self.mpl.rcParams['toolbar'] = self.toolbar
        # Return to non-interactive mode
        if not self.wasion:
            self.plt.ioff()
        if not self.leave:
            self.plt.close(self.fig)

    def display(self):
        n = self.n
        cur_t = self._time()
        elapsed = cur_t - self.start_t
        delta_it = n - self.last_print_n
        delta_t = cur_t - self.last_print_t

        # Inline due to multiple calls
        total = self.total
        xdata = self.xdata
        ydata = self.ydata
        zdata = self.zdata
        ax = self.ax
        line1 = self.line1
        line2 = self.line2
        # instantaneous rate
        y = delta_it / delta_t
        # overall rate
        z = n / elapsed
        # update line data
        xdata.append(n * 100.0 / total if total else cur_t)
        ydata.append(y)
        zdata.append(z)

        # Discard old values
        # xmin, xmax = ax.get_xlim()
        # if (not total) and elapsed > xmin * 1.1:
        if (not total) and elapsed > 66:
            xdata.popleft()
            ydata.popleft()
            zdata.popleft()

        ymin, ymax = ax.get_ylim()
        if y > ymax or z > ymax:
            ymax = 1.1 * y
            ax.set_ylim(ymin, ymax)
            ax.figure.canvas.draw()

        if total:
            line1.set_data(xdata, ydata)
            line2.set_data(xdata, zdata)
            try:
                poly_lims = self.hspan.get_xy()
            except AttributeError:
                self.hspan = self.plt.axhspan(
                    0, 0.001, xmin=0, xmax=0, color='g')
                poly_lims = self.hspan.get_xy()
            poly_lims[0, 1] = ymin
            poly_lims[1, 1] = ymax
            poly_lims[2] = [n / total, ymax]
            poly_lims[3] = [poly_lims[2, 0], ymin]
            if len(poly_lims) > 4:
                poly_lims[4, 1] = ymin
            self.hspan.set_xy(poly_lims)
        else:
            t_ago = [cur_t - i for i in xdata]
            line1.set_data(t_ago, ydata)
            line2.set_data(t_ago, zdata)

        ax.set_title(self.format_meter(
            n, total, elapsed, 0,
            self.desc, self.ascii, self.unit, self.unit_scale,
            1 / self.avg_time if self.avg_time else None, self.bar_format,
            self.postfix, self.unit_divisor),
            fontname="DejaVu Sans Mono", fontsize=11)
        self.plt.pause(1e-9)


def tgrange(*args, **kwargs):
    """
    A shortcut for `tqdm.gui.tqdm(xrange(*args), **kwargs)`.
    On Python3+, `range` is used instead of `xrange`.
    """
    return tqdm_gui(_range(*args), **kwargs)


# Aliases
tqdm = tqdm_gui
trange = tgrange