aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/machine/machine_atmega328.go
diff options
context:
space:
mode:
authorYurii Soldak <[email protected]>2023-11-29 03:46:11 +0100
committerRon Evans <[email protected]>2023-12-02 13:26:59 +0100
commit6420e901240842f5f0178299bcb14081b0c906da (patch)
tree7d392684c640e6d6cb4e8f6418dcb7f5724aa5ba /src/machine/machine_atmega328.go
parent2d289addb78a62de6e3b6e6b1b843ce6f65a8011 (diff)
downloadtinygo-6420e901240842f5f0178299bcb14081b0c906da.tar.gz
tinygo-6420e901240842f5f0178299bcb14081b0c906da.zip
machine/atmega328pb: refactor to enable extra uart
Diffstat (limited to 'src/machine/machine_atmega328.go')
-rw-r--r--src/machine/machine_atmega328.go548
1 files changed, 548 insertions, 0 deletions
diff --git a/src/machine/machine_atmega328.go b/src/machine/machine_atmega328.go
new file mode 100644
index 000000000..e4b2bb06f
--- /dev/null
+++ b/src/machine/machine_atmega328.go
@@ -0,0 +1,548 @@
+//go:build avr && (atmega328p || atmega328pb)
+
+package machine
+
+import (
+ "device/avr"
+ "runtime/interrupt"
+ "runtime/volatile"
+)
+
+// PWM is one PWM peripheral, which consists of a counter and two output
+// channels (that can be connected to two fixed pins). You can set the frequency
+// using SetPeriod, but only for all the channels in this PWM peripheral at
+// once.
+type PWM struct {
+ num uint8
+}
+
+var (
+ Timer0 = PWM{0} // 8 bit timer for PD5 and PD6
+ Timer1 = PWM{1} // 16 bit timer for PB1 and PB2
+ Timer2 = PWM{2} // 8 bit timer for PB3 and PD3
+)
+
+// Configure enables and configures this PWM.
+//
+// For the two 8 bit timers, there is only a limited number of periods
+// available, namely the CPU frequency divided by 256 and again divided by 1, 8,
+// 64, 256, or 1024. For a MCU running at 16MHz, this would be a period of 16µs,
+// 128µs, 1024µs, 4096µs, or 16384µs.
+func (pwm PWM) Configure(config PWMConfig) error {
+ switch pwm.num {
+ case 0, 2: // 8-bit timers (Timer/counter 0 and Timer/counter 2)
+ // Calculate the timer prescaler.
+ // While we could configure a flexible top, that would sacrifice one of
+ // the PWM output compare registers and thus a PWM channel. I've chosen
+ // to instead limit this timer to a fixed number of frequencies.
+ var prescaler uint8
+ switch config.Period {
+ case 0, (uint64(1e9) * 256 * 1) / uint64(CPUFrequency()):
+ prescaler = 1
+ case (uint64(1e9) * 256 * 8) / uint64(CPUFrequency()):
+ prescaler = 2
+ case (uint64(1e9) * 256 * 64) / uint64(CPUFrequency()):
+ prescaler = 3
+ case (uint64(1e9) * 256 * 256) / uint64(CPUFrequency()):
+ prescaler = 4
+ case (uint64(1e9) * 256 * 1024) / uint64(CPUFrequency()):
+ prescaler = 5
+ default:
+ return ErrPWMPeriodTooLong
+ }
+
+ if pwm.num == 0 {
+ avr.TCCR0B.Set(prescaler)
+ // Set the PWM mode to fast PWM (mode = 3).
+ avr.TCCR0A.Set(avr.TCCR0A_WGM00 | avr.TCCR0A_WGM01)
+ // monotonic timer is using the same time as PWM:0
+ // we must adust internal settings of monotonic timer when PWM:0 settings changed
+ adjustMonotonicTimer()
+ } else {
+ avr.TCCR2B.Set(prescaler)
+ // Set the PWM mode to fast PWM (mode = 3).
+ avr.TCCR2A.Set(avr.TCCR2A_WGM20 | avr.TCCR2A_WGM21)
+ }
+ case 1: // Timer/counter 1
+ // The top value is the number of PWM ticks a PWM period takes. It is
+ // initially picked assuming an unlimited counter top and no PWM
+ // prescaler.
+ var top uint64
+ if config.Period == 0 {
+ // Use a top appropriate for LEDs. Picking a relatively low period
+ // here (0xff) for consistency with the other timers.
+ top = 0xff
+ } else {
+ // The formula below calculates the following formula, optimized:
+ // top = period * (CPUFrequency() / 1e9)
+ // By dividing the CPU frequency first (an operation that is easily
+ // optimized away) the period has less chance of overflowing.
+ top = config.Period * (uint64(CPUFrequency()) / 1000000) / 1000
+ }
+
+ avr.TCCR1A.Set(avr.TCCR1A_WGM11)
+
+ // The ideal PWM period may be larger than would fit in the PWM counter,
+ // which is 16 bits (see maxTop). Therefore, try to make the PWM clock
+ // speed lower with a prescaler to make the top value fit the maximum
+ // top value.
+ const maxTop = 0x10000
+ switch {
+ case top <= maxTop:
+ avr.TCCR1B.Set(3<<3 | 1) // no prescaling
+ case top/8 <= maxTop:
+ avr.TCCR1B.Set(3<<3 | 2) // divide by 8
+ top /= 8
+ case top/64 <= maxTop:
+ avr.TCCR1B.Set(3<<3 | 3) // divide by 64
+ top /= 64
+ case top/256 <= maxTop:
+ avr.TCCR1B.Set(3<<3 | 4) // divide by 256
+ top /= 256
+ case top/1024 <= maxTop:
+ avr.TCCR1B.Set(3<<3 | 5) // divide by 1024
+ top /= 1024
+ default:
+ return ErrPWMPeriodTooLong
+ }
+
+ // A top of 0x10000 is at 100% duty cycle. Subtract one because the
+ // counter counts from 0, not 1 (avoiding an off-by-one).
+ top -= 1
+
+ avr.ICR1H.Set(uint8(top >> 8))
+ avr.ICR1L.Set(uint8(top))
+ }
+ return nil
+}
+
+// SetPeriod updates the period of this PWM peripheral.
+// To set a particular frequency, use the following formula:
+//
+// period = 1e9 / frequency
+//
+// If you use a period of 0, a period that works well for LEDs will be picked.
+//
+// SetPeriod will not change the prescaler, but also won't change the current
+// value in any of the channels. This means that you may need to update the
+// value for the particular channel.
+//
+// Note that you cannot pick any arbitrary period after the PWM peripheral has
+// been configured. If you want to switch between frequencies, pick the lowest
+// frequency (longest period) once when calling Configure and adjust the
+// frequency here as needed.
+func (pwm PWM) SetPeriod(period uint64) error {
+ if pwm.num != 1 {
+ return ErrPWMPeriodTooLong // TODO better error message
+ }
+
+ // The top value is the number of PWM ticks a PWM period takes. It is
+ // initially picked assuming an unlimited counter top and no PWM
+ // prescaler.
+ var top uint64
+ if period == 0 {
+ // Use a top appropriate for LEDs. Picking a relatively low period
+ // here (0xff) for consistency with the other timers.
+ top = 0xff
+ } else {
+ // The formula below calculates the following formula, optimized:
+ // top = period * (CPUFrequency() / 1e9)
+ // By dividing the CPU frequency first (an operation that is easily
+ // optimized away) the period has less chance of overflowing.
+ top = period * (uint64(CPUFrequency()) / 1000000) / 1000
+ }
+
+ prescaler := avr.TCCR1B.Get() & 0x7
+ switch prescaler {
+ case 1:
+ top /= 1
+ case 2:
+ top /= 8
+ case 3:
+ top /= 64
+ case 4:
+ top /= 256
+ case 5:
+ top /= 1024
+ }
+
+ // A top of 0x10000 is at 100% duty cycle. Subtract one because the counter
+ // counts from 0, not 1 (avoiding an off-by-one).
+ top -= 1
+
+ if top > 0xffff {
+ return ErrPWMPeriodTooLong
+ }
+
+ // Warning: this change is not atomic!
+ avr.ICR1H.Set(uint8(top >> 8))
+ avr.ICR1L.Set(uint8(top))
+
+ // ... and because of that, set the counter back to zero to avoid most of
+ // the effects of this non-atomicity.
+ avr.TCNT1H.Set(0)
+ avr.TCNT1L.Set(0)
+
+ return nil
+}
+
+// Top returns the current counter top, for use in duty cycle calculation. It
+// will only change with a call to Configure or SetPeriod, otherwise it is
+// constant.
+//
+// The value returned here is hardware dependent. In general, it's best to treat
+// it as an opaque value that can be divided by some number and passed to Set
+// (see Set documentation for more information).
+func (pwm PWM) Top() uint32 {
+ if pwm.num == 1 {
+ // Timer 1 has a configurable top value.
+ low := avr.ICR1L.Get()
+ high := avr.ICR1H.Get()
+ return uint32(high)<<8 | uint32(low) + 1
+ }
+ // Other timers go from 0 to 0xff (0x100 or 256 in total).
+ return 256
+}
+
+// Counter returns the current counter value of the timer in this PWM
+// peripheral. It may be useful for debugging.
+func (pwm PWM) Counter() uint32 {
+ switch pwm.num {
+ case 0:
+ return uint32(avr.TCNT0.Get())
+ case 1:
+ mask := interrupt.Disable()
+ low := avr.TCNT1L.Get()
+ high := avr.TCNT1H.Get()
+ interrupt.Restore(mask)
+ return uint32(high)<<8 | uint32(low)
+ case 2:
+ return uint32(avr.TCNT2.Get())
+ }
+ // Unknown PWM.
+ return 0
+}
+
+// Period returns the used PWM period in nanoseconds. It might deviate slightly
+// from the configured period due to rounding.
+func (pwm PWM) Period() uint64 {
+ var prescaler uint8
+ switch pwm.num {
+ case 0:
+ prescaler = avr.TCCR0B.Get() & 0x7
+ case 1:
+ prescaler = avr.TCCR1B.Get() & 0x7
+ case 2:
+ prescaler = avr.TCCR2B.Get() & 0x7
+ }
+ top := uint64(pwm.Top())
+ switch prescaler {
+ case 1: // prescaler 1
+ return 1 * top * 1000 / uint64(CPUFrequency()/1e6)
+ case 2: // prescaler 8
+ return 8 * top * 1000 / uint64(CPUFrequency()/1e6)
+ case 3: // prescaler 64
+ return 64 * top * 1000 / uint64(CPUFrequency()/1e6)
+ case 4: // prescaler 256
+ return 256 * top * 1000 / uint64(CPUFrequency()/1e6)
+ case 5: // prescaler 1024
+ return 1024 * top * 1000 / uint64(CPUFrequency()/1e6)
+ default: // unknown clock source
+ return 0
+ }
+}
+
+// Channel returns a PWM channel for the given pin.
+func (pwm PWM) Channel(pin Pin) (uint8, error) {
+ pin.Configure(PinConfig{Mode: PinOutput})
+ pin.Low()
+ switch pwm.num {
+ case 0:
+ switch pin {
+ case PD6: // channel A
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
+ return 0, nil
+ case PD5: // channel B
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
+ return 1, nil
+ }
+ case 1:
+ switch pin {
+ case PB1: // channel A
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
+ return 0, nil
+ case PB2: // channel B
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
+ return 1, nil
+ }
+ case 2:
+ switch pin {
+ case PB3: // channel A
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
+ return 0, nil
+ case PD3: // channel B
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
+ return 1, nil
+ }
+ }
+ return 0, ErrInvalidOutputPin
+}
+
+// SetInverting sets whether to invert the output of this channel.
+// Without inverting, a 25% duty cycle would mean the output is high for 25% of
+// the time and low for the rest. Inverting flips the output as if a NOT gate
+// was placed at the output, meaning that the output would be 25% low and 75%
+// high with a duty cycle of 25%.
+//
+// Note: the invert state may not be applied on the AVR until the next call to
+// ch.Set().
+func (pwm PWM) SetInverting(channel uint8, inverting bool) {
+ switch pwm.num {
+ case 0:
+ switch channel {
+ case 0: // channel A
+ if inverting {
+ avr.PORTB.SetBits(1 << 6) // PB6 high
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0A0)
+ } else {
+ avr.PORTB.ClearBits(1 << 6) // PB6 low
+ avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A0)
+ }
+ case 1: // channel B
+ if inverting {
+ avr.PORTB.SetBits(1 << 5) // PB5 high
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0B0)
+ } else {
+ avr.PORTB.ClearBits(1 << 5) // PB5 low
+ avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B0)
+ }
+ }
+ case 1:
+ // Note: the COM1A0/COM1B0 bit is not set with the configuration below.
+ // It will be set the following call to Set(), however.
+ switch channel {
+ case 0: // channel A, PB1
+ if inverting {
+ avr.PORTB.SetBits(1 << 1) // PB1 high
+ } else {
+ avr.PORTB.ClearBits(1 << 1) // PB1 low
+ }
+ case 1: // channel B, PB2
+ if inverting {
+ avr.PORTB.SetBits(1 << 2) // PB2 high
+ } else {
+ avr.PORTB.ClearBits(1 << 2) // PB2 low
+ }
+ }
+ case 2:
+ switch channel {
+ case 0: // channel A
+ if inverting {
+ avr.PORTB.SetBits(1 << 3) // PB3 high
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2A0)
+ } else {
+ avr.PORTB.ClearBits(1 << 3) // PB3 low
+ avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A0)
+ }
+ case 1: // channel B
+ if inverting {
+ avr.PORTD.SetBits(1 << 3) // PD3 high
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2B0)
+ } else {
+ avr.PORTD.ClearBits(1 << 3) // PD3 low
+ avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B0)
+ }
+ }
+ }
+}
+
+// Set updates the channel value. This is used to control the channel duty
+// cycle, in other words the fraction of time the channel output is high (or low
+// when inverted). For example, to set it to a 25% duty cycle, use:
+//
+// pwm.Set(channel, pwm.Top() / 4)
+//
+// pwm.Set(channel, 0) will set the output to low and pwm.Set(channel,
+// pwm.Top()) will set the output to high, assuming the output isn't inverted.
+func (pwm PWM) Set(channel uint8, value uint32) {
+ switch pwm.num {
+ case 0:
+ value := uint16(value)
+ switch channel {
+ case 0: // channel A
+ if value == 0 {
+ avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A1)
+ } else {
+ avr.OCR0A.Set(uint8(value - 1))
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
+ }
+ case 1: // channel B
+ if value == 0 {
+ avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B1)
+ } else {
+ avr.OCR0B.Set(uint8(value) - 1)
+ avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
+ }
+ }
+ // monotonic timer is using the same time as PWM:0
+ // we must adust internal settings of monotonic timer when PWM:0 settings changed
+ adjustMonotonicTimer()
+ case 1:
+ mask := interrupt.Disable()
+ switch channel {
+ case 0: // channel A, PB1
+ if value == 0 {
+ avr.TCCR1A.ClearBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR1AH.Set(uint8(value >> 8))
+ avr.OCR1AL.Set(uint8(value))
+ if avr.PORTB.HasBits(1 << 1) { // is PB1 high?
+ // Yes, set the inverting bit.
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
+ }
+ }
+ case 1: // channel B, PB2
+ if value == 0 {
+ avr.TCCR1A.ClearBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
+ } else {
+ value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
+ avr.OCR1BH.Set(uint8(value >> 8))
+ avr.OCR1BL.Set(uint8(value))
+ if avr.PORTB.HasBits(1 << 2) { // is PB2 high?
+ // Yes, set the inverting bit.
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
+ } else {
+ // No, output is non-inverting.
+ avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
+ }
+ }
+ }
+ interrupt.Restore(mask)
+ case 2:
+ value := uint16(value)
+ switch channel {
+ case 0: // channel A
+ if value == 0 {
+ avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A1)
+ } else {
+ avr.OCR2A.Set(uint8(value - 1))
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
+ }
+ case 1: // channel B
+ if value == 0 {
+ avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B1)
+ } else {
+ avr.OCR2B.Set(uint8(value - 1))
+ avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
+ }
+ }
+ }
+}
+
+// Pin Change Interrupts
+type PinChange uint8
+
+const (
+ PinRising PinChange = 1 << iota
+ PinFalling
+ PinToggle = PinRising | PinFalling
+)
+
+func (pin Pin) SetInterrupt(pinChange PinChange, callback func(Pin)) (err error) {
+
+ switch {
+ case pin >= PB0 && pin <= PB7:
+ // PCMSK0 - PCINT0-7
+ pinStates[0] = avr.PINB.Get()
+ pinIndex := pin - PB0
+ if pinChange&PinRising > 0 {
+ pinCallbacks[0][pinIndex][0] = callback
+ }
+ if pinChange&PinFalling > 0 {
+ pinCallbacks[0][pinIndex][1] = callback
+ }
+ if callback != nil {
+ avr.PCMSK0.SetBits(1 << pinIndex)
+ } else {
+ avr.PCMSK0.ClearBits(1 << pinIndex)
+ }
+ avr.PCICR.SetBits(avr.PCICR_PCIE0)
+ interrupt.New(avr.IRQ_PCINT0, handlePCINT0Interrupts)
+ case pin >= PC0 && pin <= PC7:
+ // PCMSK1 - PCINT8-14
+ pinStates[1] = avr.PINC.Get()
+ pinIndex := pin - PC0
+ if pinChange&PinRising > 0 {
+ pinCallbacks[1][pinIndex][0] = callback
+ }
+ if pinChange&PinFalling > 0 {
+ pinCallbacks[1][pinIndex][1] = callback
+ }
+ if callback != nil {
+ avr.PCMSK1.SetBits(1 << pinIndex)
+ } else {
+ avr.PCMSK1.ClearBits(1 << pinIndex)
+ }
+ avr.PCICR.SetBits(avr.PCICR_PCIE1)
+ interrupt.New(avr.IRQ_PCINT1, handlePCINT1Interrupts)
+ case pin >= PD0 && pin <= PD7:
+ // PCMSK2 - PCINT16-23
+ pinStates[2] = avr.PIND.Get()
+ pinIndex := pin - PD0
+ if pinChange&PinRising > 0 {
+ pinCallbacks[2][pinIndex][0] = callback
+ }
+ if pinChange&PinFalling > 0 {
+ pinCallbacks[2][pinIndex][1] = callback
+ }
+ if callback != nil {
+ avr.PCMSK2.SetBits(1 << pinIndex)
+ } else {
+ avr.PCMSK2.ClearBits(1 << pinIndex)
+ }
+ avr.PCICR.SetBits(avr.PCICR_PCIE2)
+ interrupt.New(avr.IRQ_PCINT2, handlePCINT2Interrupts)
+ default:
+ return ErrInvalidInputPin
+ }
+
+ return nil
+}
+
+var pinCallbacks [3][8][2]func(Pin)
+var pinStates [3]uint8
+
+func handlePCINTInterrupts(intr uint8, port *volatile.Register8) {
+ current := port.Get()
+ change := pinStates[intr] ^ current
+ pinStates[intr] = current
+ for i := uint8(0); i < 8; i++ {
+ if (change>>i)&0x01 != 0x01 {
+ continue
+ }
+ pin := Pin(intr*8 + i)
+ value := pin.Get()
+ if value && pinCallbacks[intr][i][0] != nil {
+ pinCallbacks[intr][i][0](pin)
+ }
+ if !value && pinCallbacks[intr][i][1] != nil {
+ pinCallbacks[intr][i][1](pin)
+ }
+ }
+}
+
+func handlePCINT0Interrupts(intr interrupt.Interrupt) {
+ handlePCINTInterrupts(0, avr.PINB)
+}
+
+func handlePCINT1Interrupts(intr interrupt.Interrupt) {
+ handlePCINTInterrupts(1, avr.PINC)
+}
+
+func handlePCINT2Interrupts(intr interrupt.Interrupt) {
+ handlePCINTInterrupts(2, avr.PIND)
+}