1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
|
package compiler
// This file implements the 'defer' keyword in Go.
// Defer statements are implemented by transforming the function in the
// following way:
// * Creating an alloca in the entry block that contains a pointer (initially
// null) to the linked list of defer frames.
// * Every time a defer statement is executed, a new defer frame is created
// using alloca with a pointer to the previous defer frame, and the head
// pointer in the entry block is replaced with a pointer to this defer
// frame.
// * On return, runtime.rundefers is called which calls all deferred functions
// from the head of the linked list until it has gone through all defer
// frames.
import (
"go/types"
"strconv"
"github.com/tinygo-org/tinygo/compiler/llvmutil"
"golang.org/x/tools/go/ssa"
"tinygo.org/x/go-llvm"
)
// supportsRecover returns whether the compiler supports the recover() builtin
// for the current architecture.
func (b *builder) supportsRecover() bool {
switch b.archFamily() {
case "wasm32":
// Probably needs to be implemented using the exception handling
// proposal of WebAssembly:
// https://github.com/WebAssembly/exception-handling
return false
case "riscv64", "xtensa":
// TODO: add support for these architectures
return false
default:
return true
}
}
// hasDeferFrame returns whether the current function needs to catch panics and
// run defers.
func (b *builder) hasDeferFrame() bool {
if b.fn.Recover == nil {
return false
}
return b.supportsRecover()
}
// deferInitFunc sets up this function for future deferred calls. It must be
// called from within the entry block when this function contains deferred
// calls.
func (b *builder) deferInitFunc() {
// Some setup.
b.deferFuncs = make(map[*ssa.Function]int)
b.deferInvokeFuncs = make(map[string]int)
b.deferClosureFuncs = make(map[*ssa.Function]int)
b.deferExprFuncs = make(map[ssa.Value]int)
b.deferBuiltinFuncs = make(map[ssa.Value]deferBuiltin)
// Create defer list pointer.
b.deferPtr = b.CreateAlloca(b.dataPtrType, "deferPtr")
b.CreateStore(llvm.ConstPointerNull(b.dataPtrType), b.deferPtr)
if b.hasDeferFrame() {
// Set up the defer frame with the current stack pointer.
// This assumes that the stack pointer doesn't move outside of the
// function prologue/epilogue (an invariant maintained by TinyGo but
// possibly broken by the C alloca function).
// The frame pointer is _not_ saved, because it is marked as clobbered
// in the setjmp-like inline assembly.
deferFrameType := b.getLLVMRuntimeType("deferFrame")
b.deferFrame = b.CreateAlloca(deferFrameType, "deferframe.buf")
stackPointer := b.readStackPointer()
b.createRuntimeCall("setupDeferFrame", []llvm.Value{b.deferFrame, stackPointer}, "")
// Create the landing pad block, which is where control transfers after
// a panic.
b.landingpad = b.ctx.AddBasicBlock(b.llvmFn, "lpad")
}
}
// createLandingPad fills in the landing pad block. This block runs the deferred
// functions and returns (by jumping to the recover block). If the function is
// still panicking after the defers are run, the panic will be re-raised in
// destroyDeferFrame.
func (b *builder) createLandingPad() {
b.SetInsertPointAtEnd(b.landingpad)
// Add debug info, if needed.
// The location used is the closing bracket of the function.
if b.Debug {
pos := b.program.Fset.Position(b.fn.Syntax().End())
b.SetCurrentDebugLocation(uint(pos.Line), uint(pos.Column), b.difunc, llvm.Metadata{})
}
b.createRunDefers()
// Continue at the 'recover' block, which returns to the parent in an
// appropriate way.
b.CreateBr(b.blockEntries[b.fn.Recover])
}
// createInvokeCheckpoint saves the function state at the given point, to
// continue at the landing pad if a panic happened. This is implemented using a
// setjmp-like construct.
func (b *builder) createInvokeCheckpoint() {
// Construct inline assembly equivalents of setjmp.
// The assembly works as follows:
// * All registers (both callee-saved and caller saved) are clobbered
// after the inline assembly returns.
// * The assembly stores the address just past the end of the assembly
// into the jump buffer.
// * The return value (eax, rax, r0, etc) is set to zero in the inline
// assembly but set to an unspecified non-zero value when jumping using
// a longjmp.
var asmString, constraints string
resultType := b.uintptrType
switch b.archFamily() {
case "i386":
asmString = `
xorl %eax, %eax
movl $$1f, 4(%ebx)
1:`
constraints = "={eax},{ebx},~{ebx},~{ecx},~{edx},~{esi},~{edi},~{ebp},~{xmm0},~{xmm1},~{xmm2},~{xmm3},~{xmm4},~{xmm5},~{xmm6},~{xmm7},~{fpsr},~{fpcr},~{flags},~{dirflag},~{memory}"
// This doesn't include the floating point stack because TinyGo uses
// newer floating point instructions.
case "x86_64":
asmString = `
leaq 1f(%rip), %rax
movq %rax, 8(%rbx)
xorq %rax, %rax
1:`
constraints = "={rax},{rbx},~{rbx},~{rcx},~{rdx},~{rsi},~{rdi},~{rbp},~{r8},~{r9},~{r10},~{r11},~{r12},~{r13},~{r14},~{r15},~{xmm0},~{xmm1},~{xmm2},~{xmm3},~{xmm4},~{xmm5},~{xmm6},~{xmm7},~{xmm8},~{xmm9},~{xmm10},~{xmm11},~{xmm12},~{xmm13},~{xmm14},~{xmm15},~{xmm16},~{xmm17},~{xmm18},~{xmm19},~{xmm20},~{xmm21},~{xmm22},~{xmm23},~{xmm24},~{xmm25},~{xmm26},~{xmm27},~{xmm28},~{xmm29},~{xmm30},~{xmm31},~{fpsr},~{fpcr},~{flags},~{dirflag},~{memory}"
// This list doesn't include AVX/AVX512 registers because TinyGo
// doesn't currently enable support for AVX instructions.
case "arm":
// Note: the following assembly takes into account that the PC is
// always 4 bytes ahead on ARM. The PC that is stored always points
// to the instruction just after the assembly fragment so that
// tinygo_longjmp lands at the correct instruction.
if b.isThumb() {
// Instructions are 2 bytes in size.
asmString = `
movs r0, #0
mov r2, pc
str r2, [r1, #4]`
} else {
// Instructions are 4 bytes in size.
asmString = `
str pc, [r1, #4]
movs r0, #0`
}
constraints = "={r0},{r1},~{r1},~{r2},~{r3},~{r4},~{r5},~{r6},~{r7},~{r8},~{r9},~{r10},~{r11},~{r12},~{lr},~{q0},~{q1},~{q2},~{q3},~{q4},~{q5},~{q6},~{q7},~{q8},~{q9},~{q10},~{q11},~{q12},~{q13},~{q14},~{q15},~{cpsr},~{memory}"
case "aarch64":
asmString = `
adr x2, 1f
str x2, [x1, #8]
mov x0, #0
1:
`
constraints = "={x0},{x1},~{x1},~{x2},~{x3},~{x4},~{x5},~{x6},~{x7},~{x8},~{x9},~{x10},~{x11},~{x12},~{x13},~{x14},~{x15},~{x16},~{x17},~{x19},~{x20},~{x21},~{x22},~{x23},~{x24},~{x25},~{x26},~{x27},~{x28},~{lr},~{q0},~{q1},~{q2},~{q3},~{q4},~{q5},~{q6},~{q7},~{q8},~{q9},~{q10},~{q11},~{q12},~{q13},~{q14},~{q15},~{q16},~{q17},~{q18},~{q19},~{q20},~{q21},~{q22},~{q23},~{q24},~{q25},~{q26},~{q27},~{q28},~{q29},~{q30},~{nzcv},~{ffr},~{vg},~{memory}"
if b.GOOS != "darwin" && b.GOOS != "windows" {
// These registers cause the following warning when compiling for
// MacOS and Windows:
// warning: inline asm clobber list contains reserved registers:
// X18, FP
// Reserved registers on the clobber list may not be preserved
// across the asm statement, and clobbering them may lead to
// undefined behaviour.
constraints += ",~{x18},~{fp}"
}
// TODO: SVE registers, which we don't use in TinyGo at the moment.
case "avr":
// Note: the Y register (R28:R29) is a fixed register and therefore
// needs to be saved manually. TODO: do this only once per function with
// a defer frame, not for every call.
resultType = b.ctx.Int8Type()
asmString = `
ldi r24, pm_lo8(1f)
ldi r25, pm_hi8(1f)
std z+2, r24
std z+3, r25
std z+4, r28
std z+5, r29
ldi r24, 0
1:`
constraints = "={r24},z,~{r0},~{r2},~{r3},~{r4},~{r5},~{r6},~{r7},~{r8},~{r9},~{r10},~{r11},~{r12},~{r13},~{r14},~{r15},~{r16},~{r17},~{r18},~{r19},~{r20},~{r21},~{r22},~{r23},~{r25},~{r26},~{r27}"
case "riscv32":
asmString = `
la a2, 1f
sw a2, 4(a1)
li a0, 0
1:`
constraints = "={a0},{a1},~{a1},~{a2},~{a3},~{a4},~{a5},~{a6},~{a7},~{s0},~{s1},~{s2},~{s3},~{s4},~{s5},~{s6},~{s7},~{s8},~{s9},~{s10},~{s11},~{t0},~{t1},~{t2},~{t3},~{t4},~{t5},~{t6},~{ra},~{f0},~{f1},~{f2},~{f3},~{f4},~{f5},~{f6},~{f7},~{f8},~{f9},~{f10},~{f11},~{f12},~{f13},~{f14},~{f15},~{f16},~{f17},~{f18},~{f19},~{f20},~{f21},~{f22},~{f23},~{f24},~{f25},~{f26},~{f27},~{f28},~{f29},~{f30},~{f31},~{memory}"
default:
// This case should have been handled by b.supportsRecover().
b.addError(b.fn.Pos(), "unknown architecture for defer: "+b.archFamily())
}
asmType := llvm.FunctionType(resultType, []llvm.Type{b.deferFrame.Type()}, false)
asm := llvm.InlineAsm(asmType, asmString, constraints, false, false, 0, false)
result := b.CreateCall(asmType, asm, []llvm.Value{b.deferFrame}, "setjmp")
result.AddCallSiteAttribute(-1, b.ctx.CreateEnumAttribute(llvm.AttributeKindID("returns_twice"), 0))
isZero := b.CreateICmp(llvm.IntEQ, result, llvm.ConstInt(resultType, 0, false), "setjmp.result")
continueBB := b.insertBasicBlock("")
b.CreateCondBr(isZero, continueBB, b.landingpad)
b.SetInsertPointAtEnd(continueBB)
b.blockExits[b.currentBlock] = continueBB
}
// isInLoop checks if there is a path from a basic block to itself.
func isInLoop(start *ssa.BasicBlock) bool {
// Use a breadth-first search to scan backwards through the block graph.
queue := []*ssa.BasicBlock{start}
checked := map[*ssa.BasicBlock]struct{}{}
for len(queue) > 0 {
// pop a block off of the queue
block := queue[len(queue)-1]
queue = queue[:len(queue)-1]
// Search through predecessors.
// Searching backwards means that this is pretty fast when the block is close to the start of the function.
// Defers are often placed near the start of the function.
for _, pred := range block.Preds {
if pred == start {
// cycle found
return true
}
if _, ok := checked[pred]; ok {
// block already checked
continue
}
// add to queue and checked map
queue = append(queue, pred)
checked[pred] = struct{}{}
}
}
return false
}
// createDefer emits a single defer instruction, to be run when this function
// returns.
func (b *builder) createDefer(instr *ssa.Defer) {
// The pointer to the previous defer struct, which we will replace to
// make a linked list.
next := b.CreateLoad(b.dataPtrType, b.deferPtr, "defer.next")
var values []llvm.Value
valueTypes := []llvm.Type{b.uintptrType, next.Type()}
if instr.Call.IsInvoke() {
// Method call on an interface.
// Get callback type number.
methodName := instr.Call.Method.FullName()
if _, ok := b.deferInvokeFuncs[methodName]; !ok {
b.deferInvokeFuncs[methodName] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, &instr.Call)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferInvokeFuncs[methodName]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by the call parameters).
itf := b.getValue(instr.Call.Value, getPos(instr)) // interface
typecode := b.CreateExtractValue(itf, 0, "invoke.func.typecode")
receiverValue := b.CreateExtractValue(itf, 1, "invoke.func.receiver")
values = []llvm.Value{callback, next, typecode, receiverValue}
valueTypes = append(valueTypes, b.dataPtrType, b.dataPtrType)
for _, arg := range instr.Call.Args {
val := b.getValue(arg, getPos(instr))
values = append(values, val)
valueTypes = append(valueTypes, val.Type())
}
} else if callee, ok := instr.Call.Value.(*ssa.Function); ok {
// Regular function call.
if _, ok := b.deferFuncs[callee]; !ok {
b.deferFuncs[callee] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, callee)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferFuncs[callee]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields).
values = []llvm.Value{callback, next}
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param, getPos(instr))
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
} else if makeClosure, ok := instr.Call.Value.(*ssa.MakeClosure); ok {
// Immediately applied function literal with free variables.
// Extract the context from the closure. We won't need the function
// pointer.
// TODO: ignore this closure entirely and put pointers to the free
// variables directly in the defer struct, avoiding a memory allocation.
closure := b.getValue(instr.Call.Value, getPos(instr))
context := b.CreateExtractValue(closure, 0, "")
// Get the callback number.
fn := makeClosure.Fn.(*ssa.Function)
if _, ok := b.deferClosureFuncs[fn]; !ok {
b.deferClosureFuncs[fn] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, makeClosure)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferClosureFuncs[fn]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by all parameters including the
// context pointer).
values = []llvm.Value{callback, next}
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param, getPos(instr))
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
values = append(values, context)
valueTypes = append(valueTypes, context.Type())
} else if builtin, ok := instr.Call.Value.(*ssa.Builtin); ok {
var argTypes []types.Type
var argValues []llvm.Value
for _, arg := range instr.Call.Args {
argTypes = append(argTypes, arg.Type())
argValues = append(argValues, b.getValue(arg, getPos(instr)))
}
if _, ok := b.deferBuiltinFuncs[instr.Call.Value]; !ok {
b.deferBuiltinFuncs[instr.Call.Value] = deferBuiltin{
callName: builtin.Name(),
pos: builtin.Pos(),
argTypes: argTypes,
callback: len(b.allDeferFuncs),
}
b.allDeferFuncs = append(b.allDeferFuncs, instr.Call.Value)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferBuiltinFuncs[instr.Call.Value].callback), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields).
values = []llvm.Value{callback, next}
for _, param := range argValues {
values = append(values, param)
valueTypes = append(valueTypes, param.Type())
}
} else {
funcValue := b.getValue(instr.Call.Value, getPos(instr))
if _, ok := b.deferExprFuncs[instr.Call.Value]; !ok {
b.deferExprFuncs[instr.Call.Value] = len(b.allDeferFuncs)
b.allDeferFuncs = append(b.allDeferFuncs, &instr.Call)
}
callback := llvm.ConstInt(b.uintptrType, uint64(b.deferExprFuncs[instr.Call.Value]), false)
// Collect all values to be put in the struct (starting with
// runtime._defer fields, followed by all parameters including the
// context pointer).
values = []llvm.Value{callback, next, funcValue}
valueTypes = append(valueTypes, funcValue.Type())
for _, param := range instr.Call.Args {
llvmParam := b.getValue(param, getPos(instr))
values = append(values, llvmParam)
valueTypes = append(valueTypes, llvmParam.Type())
}
}
// Make a struct out of the collected values to put in the deferred call
// struct.
deferredCallType := b.ctx.StructType(valueTypes, false)
deferredCall := llvm.ConstNull(deferredCallType)
for i, value := range values {
deferredCall = b.CreateInsertValue(deferredCall, value, i, "")
}
// Put this struct in an allocation.
var alloca llvm.Value
if !isInLoop(instr.Block()) {
// This can safely use a stack allocation.
alloca = llvmutil.CreateEntryBlockAlloca(b.Builder, deferredCallType, "defer.alloca")
} else {
// This may be hit a variable number of times, so use a heap allocation.
size := b.targetData.TypeAllocSize(deferredCallType)
sizeValue := llvm.ConstInt(b.uintptrType, size, false)
nilPtr := llvm.ConstNull(b.dataPtrType)
alloca = b.createRuntimeCall("alloc", []llvm.Value{sizeValue, nilPtr}, "defer.alloc.call")
}
if b.NeedsStackObjects {
b.trackPointer(alloca)
}
b.CreateStore(deferredCall, alloca)
// Push it on top of the linked list by replacing deferPtr.
b.CreateStore(alloca, b.deferPtr)
}
// createRunDefers emits code to run all deferred functions.
func (b *builder) createRunDefers() {
deferType := b.getLLVMRuntimeType("_defer")
// Add a loop like the following:
// for stack != nil {
// _stack := stack
// stack = stack.next
// switch _stack.callback {
// case 0:
// // run first deferred call
// case 1:
// // run second deferred call
// // etc.
// default:
// unreachable
// }
// }
// Create loop, in the order: loophead, loop, callback0, callback1, ..., unreachable, end.
end := b.insertBasicBlock("rundefers.end")
unreachable := b.ctx.InsertBasicBlock(end, "rundefers.default")
loop := b.ctx.InsertBasicBlock(unreachable, "rundefers.loop")
loophead := b.ctx.InsertBasicBlock(loop, "rundefers.loophead")
b.CreateBr(loophead)
// Create loop head:
// for stack != nil {
b.SetInsertPointAtEnd(loophead)
deferData := b.CreateLoad(b.dataPtrType, b.deferPtr, "")
stackIsNil := b.CreateICmp(llvm.IntEQ, deferData, llvm.ConstPointerNull(deferData.Type()), "stackIsNil")
b.CreateCondBr(stackIsNil, end, loop)
// Create loop body:
// _stack := stack
// stack = stack.next
// switch stack.callback {
b.SetInsertPointAtEnd(loop)
nextStackGEP := b.CreateInBoundsGEP(deferType, deferData, []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
llvm.ConstInt(b.ctx.Int32Type(), 1, false), // .next field
}, "stack.next.gep")
nextStack := b.CreateLoad(b.dataPtrType, nextStackGEP, "stack.next")
b.CreateStore(nextStack, b.deferPtr)
gep := b.CreateInBoundsGEP(deferType, deferData, []llvm.Value{
llvm.ConstInt(b.ctx.Int32Type(), 0, false),
llvm.ConstInt(b.ctx.Int32Type(), 0, false), // .callback field
}, "callback.gep")
callback := b.CreateLoad(b.uintptrType, gep, "callback")
sw := b.CreateSwitch(callback, unreachable, len(b.allDeferFuncs))
for i, callback := range b.allDeferFuncs {
// Create switch case, for example:
// case 0:
// // run first deferred call
block := b.insertBasicBlock("rundefers.callback" + strconv.Itoa(i))
sw.AddCase(llvm.ConstInt(b.uintptrType, uint64(i), false), block)
b.SetInsertPointAtEnd(block)
switch callback := callback.(type) {
case *ssa.CallCommon:
// Call on an value or interface value.
// Get the real defer struct type and cast to it.
valueTypes := []llvm.Type{b.uintptrType, b.dataPtrType}
if !callback.IsInvoke() {
//Expect funcValue to be passed through the deferred call.
valueTypes = append(valueTypes, b.getFuncType(callback.Signature()))
} else {
//Expect typecode
valueTypes = append(valueTypes, b.dataPtrType, b.dataPtrType)
}
for _, arg := range callback.Args {
valueTypes = append(valueTypes, b.getLLVMType(arg.Type()))
}
// Extract the params from the struct (including receiver).
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
deferredCallType := b.ctx.StructType(valueTypes, false)
for i := 2; i < len(valueTypes); i++ {
gep := b.CreateInBoundsGEP(deferredCallType, deferData, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i), false)}, "gep")
forwardParam := b.CreateLoad(valueTypes[i], gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
var fnPtr llvm.Value
var fnType llvm.Type
if !callback.IsInvoke() {
// Isolate the func value.
funcValue := forwardParams[0]
forwardParams = forwardParams[1:]
//Get function pointer and context
var context llvm.Value
fnPtr, context = b.decodeFuncValue(funcValue)
fnType = b.getLLVMFunctionType(callback.Signature())
//Pass context
forwardParams = append(forwardParams, context)
} else {
// Move typecode from the start to the end of the list of
// parameters.
forwardParams = append(forwardParams[1:], forwardParams[0])
fnPtr = b.getInvokeFunction(callback)
fnType = fnPtr.GlobalValueType()
// Add the context parameter. An interface call cannot also be a
// closure but we have to supply the parameter anyway for platforms
// with a strict calling convention.
forwardParams = append(forwardParams, llvm.Undef(b.dataPtrType))
}
b.createCall(fnType, fnPtr, forwardParams, "")
case *ssa.Function:
// Direct call.
// Get the real defer struct type and cast to it.
valueTypes := []llvm.Type{b.uintptrType, b.dataPtrType}
for _, param := range getParams(callback.Signature) {
valueTypes = append(valueTypes, b.getLLVMType(param.Type()))
}
deferredCallType := b.ctx.StructType(valueTypes, false)
// Extract the params from the struct.
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := range getParams(callback.Signature) {
gep := b.CreateInBoundsGEP(deferredCallType, deferData, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i+2), false)}, "gep")
forwardParam := b.CreateLoad(valueTypes[i+2], gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
// Plain TinyGo functions add some extra parameters to implement async functionality and function receivers.
// These parameters should not be supplied when calling into an external C/ASM function.
if !b.getFunctionInfo(callback).exported {
// Add the context parameter. We know it is ignored by the receiving
// function, but we have to pass one anyway.
forwardParams = append(forwardParams, llvm.Undef(b.dataPtrType))
}
// Call real function.
fnType, fn := b.getFunction(callback)
b.createInvoke(fnType, fn, forwardParams, "")
case *ssa.MakeClosure:
// Get the real defer struct type and cast to it.
fn := callback.Fn.(*ssa.Function)
valueTypes := []llvm.Type{b.uintptrType, b.dataPtrType}
params := fn.Signature.Params()
for i := 0; i < params.Len(); i++ {
valueTypes = append(valueTypes, b.getLLVMType(params.At(i).Type()))
}
valueTypes = append(valueTypes, b.dataPtrType) // closure
deferredCallType := b.ctx.StructType(valueTypes, false)
// Extract the params from the struct.
forwardParams := []llvm.Value{}
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := 2; i < len(valueTypes); i++ {
gep := b.CreateInBoundsGEP(deferredCallType, deferData, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i), false)}, "")
forwardParam := b.CreateLoad(valueTypes[i], gep, "param")
forwardParams = append(forwardParams, forwardParam)
}
// Call deferred function.
fnType, llvmFn := b.getFunction(fn)
b.createCall(fnType, llvmFn, forwardParams, "")
case *ssa.Builtin:
db := b.deferBuiltinFuncs[callback]
//Get parameter types
valueTypes := []llvm.Type{b.uintptrType, b.dataPtrType}
//Get signature from call results
params := callback.Type().Underlying().(*types.Signature).Params()
for i := 0; i < params.Len(); i++ {
valueTypes = append(valueTypes, b.getLLVMType(params.At(i).Type()))
}
deferredCallType := b.ctx.StructType(valueTypes, false)
// Extract the params from the struct.
var argValues []llvm.Value
zero := llvm.ConstInt(b.ctx.Int32Type(), 0, false)
for i := 0; i < params.Len(); i++ {
gep := b.CreateInBoundsGEP(deferredCallType, deferData, []llvm.Value{zero, llvm.ConstInt(b.ctx.Int32Type(), uint64(i+2), false)}, "gep")
forwardParam := b.CreateLoad(valueTypes[i+2], gep, "param")
argValues = append(argValues, forwardParam)
}
_, err := b.createBuiltin(db.argTypes, argValues, db.callName, db.pos)
if err != nil {
b.diagnostics = append(b.diagnostics, err)
}
default:
panic("unknown deferred function type")
}
// Branch back to the start of the loop.
b.CreateBr(loophead)
}
// Create default unreachable block:
// default:
// unreachable
// }
b.SetInsertPointAtEnd(unreachable)
b.CreateUnreachable()
// End of loop.
b.SetInsertPointAtEnd(end)
}
|