1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
|
package interp
// This file compiles the LLVM IR to a form that's easy to efficiently
// interpret.
import (
"strings"
"tinygo.org/x/go-llvm"
)
// A function is a compiled LLVM function, which means that interpreting it
// avoids most CGo calls necessary. This is done in a separate step so the
// result can be cached.
// Functions are in SSA form, just like the LLVM version if it. The first block
// (blocks[0]) is the entry block.
type function struct {
llvmFn llvm.Value
name string // precalculated llvmFn.Name()
params []llvm.Value // precalculated llvmFn.Params()
blocks []*basicBlock
locals map[llvm.Value]int
}
// basicBlock represents a LLVM basic block and contains a slice of
// instructions. The last instruction must be a terminator instruction.
type basicBlock struct {
phiNodes []instruction
instructions []instruction
}
// instruction is a precompiled LLVM IR instruction. The operands can be either
// an already known value (such as literalValue or pointerValue) but can also be
// the special localValue, which means that the value is a function parameter or
// is produced by another instruction in the function. In that case, the
// interpreter will replace the operand with that local value.
type instruction struct {
opcode llvm.Opcode
localIndex int
operands []value
llvmInst llvm.Value
name string
}
// String returns a nice human-readable version of this instruction.
func (inst *instruction) String() string {
operands := make([]string, len(inst.operands))
for i, op := range inst.operands {
operands[i] = op.String()
}
name := ""
if int(inst.opcode) < len(instructionNameMap) {
name = instructionNameMap[inst.opcode]
}
if name == "" {
name = "<unknown op>"
}
return name + " " + strings.Join(operands, " ")
}
// compileFunction compiles a given LLVM function to an easier to interpret
// version of the function. As far as possible, all operands are preprocessed so
// that the interpreter doesn't have to call into LLVM.
func (r *runner) compileFunction(llvmFn llvm.Value) *function {
fn := &function{
llvmFn: llvmFn,
name: llvmFn.Name(),
params: llvmFn.Params(),
locals: make(map[llvm.Value]int),
}
if llvmFn.IsDeclaration() {
// Nothing to do.
return fn
}
for i, param := range fn.params {
fn.locals[param] = i
}
// Make a map of all the blocks, to quickly find the block number for a
// given branch instruction.
blockIndices := make(map[llvm.Value]int)
for llvmBB := llvmFn.FirstBasicBlock(); !llvmBB.IsNil(); llvmBB = llvm.NextBasicBlock(llvmBB) {
index := len(blockIndices)
blockIndices[llvmBB.AsValue()] = index
}
// Compile every block.
for llvmBB := llvmFn.FirstBasicBlock(); !llvmBB.IsNil(); llvmBB = llvm.NextBasicBlock(llvmBB) {
bb := &basicBlock{}
fn.blocks = append(fn.blocks, bb)
// Compile every instruction in the block.
for llvmInst := llvmBB.FirstInstruction(); !llvmInst.IsNil(); llvmInst = llvm.NextInstruction(llvmInst) {
// Create instruction skeleton.
opcode := llvmInst.InstructionOpcode()
inst := instruction{
opcode: opcode,
localIndex: len(fn.locals),
llvmInst: llvmInst,
}
fn.locals[llvmInst] = len(fn.locals)
// Add operands specific for this instruction.
switch opcode {
case llvm.Ret:
// Return instruction, which can either be a `ret void` (no
// return value) or return a value.
numOperands := llvmInst.OperandsCount()
if numOperands != 0 {
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
}
}
case llvm.Br:
// Branch instruction. Can be either a conditional branch (with
// 3 operands) or unconditional branch (with just one basic
// block operand).
numOperands := llvmInst.OperandsCount()
switch numOperands {
case 3:
// Conditional jump to one of two blocks. Comparable to an
// if/else in procedural languages.
thenBB := llvmInst.Operand(2)
elseBB := llvmInst.Operand(1)
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
literalValue{uint32(blockIndices[thenBB])},
literalValue{uint32(blockIndices[elseBB])},
}
case 1:
// Unconditional jump to a target basic block. Comparable to
// a jump in C and Go.
jumpBB := llvmInst.Operand(0)
inst.operands = []value{
literalValue{uint32(blockIndices[jumpBB])},
}
default:
panic("unknown number of operands")
}
case llvm.Switch:
// A switch is an array of (value, label) pairs, of which the
// first one indicates the to-switch value and the default
// label.
numOperands := llvmInst.OperandsCount()
for i := 0; i < numOperands; i += 2 {
inst.operands = append(inst.operands, r.getValue(llvmInst.Operand(i)))
inst.operands = append(inst.operands, literalValue{uint32(blockIndices[llvmInst.Operand(i+1)])})
}
case llvm.PHI:
inst.name = llvmInst.Name()
incomingCount := inst.llvmInst.IncomingCount()
for i := 0; i < incomingCount; i++ {
incomingBB := inst.llvmInst.IncomingBlock(i)
incomingValue := inst.llvmInst.IncomingValue(i)
inst.operands = append(inst.operands,
literalValue{uint32(blockIndices[incomingBB.AsValue()])},
r.getValue(incomingValue),
)
}
case llvm.Select:
// Select is a special instruction that is much like a ternary
// operator. It produces operand 1 or 2 based on the boolean
// that is operand 0.
inst.name = llvmInst.Name()
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
r.getValue(llvmInst.Operand(1)),
r.getValue(llvmInst.Operand(2)),
}
case llvm.Call:
// Call is a regular function call but could also be a runtime
// intrinsic. Some runtime intrinsics are treated specially by
// the interpreter, such as runtime.alloc. We don't
// differentiate between them here because these calls may also
// need to be run at runtime, in which case they should all be
// created in the same way.
llvmCalledValue := llvmInst.CalledValue()
if !llvmCalledValue.IsAFunction().IsNil() {
name := llvmCalledValue.Name()
if name == "llvm.dbg.value" || strings.HasPrefix(name, "llvm.lifetime.") {
// These intrinsics should not be interpreted, they are not
// relevant to the execution of this function.
continue
}
}
inst.name = llvmInst.Name()
numOperands := llvmInst.OperandsCount()
inst.operands = append(inst.operands, r.getValue(llvmCalledValue))
for i := 0; i < numOperands-1; i++ {
inst.operands = append(inst.operands, r.getValue(llvmInst.Operand(i)))
}
case llvm.Load:
// Load instruction. The interpreter will load from the
// appropriate memory view.
// Also provide the memory size to be loaded, which is necessary
// with a lack of type information.
inst.name = llvmInst.Name()
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
literalValue{r.targetData.TypeAllocSize(llvmInst.Type())},
}
case llvm.Store:
// Store instruction. The interpreter will create a new object
// in the memory view of the function invocation and store to
// that, to make it possible to roll back this store.
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
r.getValue(llvmInst.Operand(1)),
}
case llvm.Alloca:
// Alloca allocates stack space for local variables.
numElements := r.getValue(inst.llvmInst.Operand(0)).(literalValue).value.(uint32)
elementSize := r.targetData.TypeAllocSize(inst.llvmInst.AllocatedType())
inst.operands = []value{
literalValue{elementSize * uint64(numElements)},
}
case llvm.GetElementPtr:
// GetElementPtr does pointer arithmetic.
inst.name = llvmInst.Name()
ptr := llvmInst.Operand(0)
n := llvmInst.OperandsCount()
elementType := llvmInst.GEPSourceElementType()
// gep: [source ptr, dest value size, pairs of indices...]
inst.operands = []value{
r.getValue(ptr),
r.getValue(llvmInst.Operand(1)),
literalValue{r.targetData.TypeAllocSize(elementType)},
}
for i := 2; i < n; i++ {
operand := r.getValue(llvmInst.Operand(i))
switch elementType.TypeKind() {
case llvm.StructTypeKind:
index := operand.(literalValue).value.(uint32)
elementOffset := r.targetData.ElementOffset(elementType, int(index))
// Encode operands in a special way. The elementOffset
// is just the offset in bytes. The elementSize is a
// negative number (when cast to a int64) by flipping
// all the bits. This allows the interpreter to detect
// this is a struct field and that it should not
// multiply it with the elementOffset to get the offset.
// It is important for the interpreter to know the
// struct field index for when the GEP must be done at
// runtime.
inst.operands = append(inst.operands, literalValue{elementOffset}, literalValue{^uint64(index)})
elementType = elementType.StructElementTypes()[index]
case llvm.ArrayTypeKind:
elementType = elementType.ElementType()
elementSize := r.targetData.TypeAllocSize(elementType)
elementSizeOperand := literalValue{elementSize}
// Add operand * elementSizeOperand bytes to the pointer.
inst.operands = append(inst.operands, operand, elementSizeOperand)
default:
// This should be unreachable.
panic("unknown type: " + elementType.String())
}
}
case llvm.BitCast, llvm.IntToPtr, llvm.PtrToInt:
// Bitcasts are usually used to cast a pointer from one type to
// another leaving the pointer itself intact.
inst.name = llvmInst.Name()
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
}
case llvm.ExtractValue:
inst.name = llvmInst.Name()
agg := llvmInst.Operand(0)
var offset uint64
indexingType := agg.Type()
for _, index := range inst.llvmInst.Indices() {
switch indexingType.TypeKind() {
case llvm.StructTypeKind:
offset += r.targetData.ElementOffset(indexingType, int(index))
indexingType = indexingType.StructElementTypes()[index]
case llvm.ArrayTypeKind:
indexingType = indexingType.ElementType()
elementSize := r.targetData.TypeAllocSize(indexingType)
offset += elementSize * uint64(index)
default:
panic("unknown type kind") // unreachable
}
}
size := r.targetData.TypeAllocSize(inst.llvmInst.Type())
// extractvalue [agg, byteOffset, byteSize]
inst.operands = []value{
r.getValue(agg),
literalValue{offset},
literalValue{size},
}
case llvm.InsertValue:
inst.name = llvmInst.Name()
agg := llvmInst.Operand(0)
var offset uint64
indexingType := agg.Type()
for _, index := range inst.llvmInst.Indices() {
switch indexingType.TypeKind() {
case llvm.StructTypeKind:
offset += r.targetData.ElementOffset(indexingType, int(index))
indexingType = indexingType.StructElementTypes()[index]
case llvm.ArrayTypeKind:
indexingType = indexingType.ElementType()
elementSize := r.targetData.TypeAllocSize(indexingType)
offset += elementSize * uint64(index)
default:
panic("unknown type kind") // unreachable
}
}
// insertvalue [agg, elt, byteOffset]
inst.operands = []value{
r.getValue(agg),
r.getValue(llvmInst.Operand(1)),
literalValue{offset},
}
case llvm.ICmp:
inst.name = llvmInst.Name()
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
r.getValue(llvmInst.Operand(1)),
literalValue{uint8(llvmInst.IntPredicate())},
}
case llvm.FCmp:
inst.name = llvmInst.Name()
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
r.getValue(llvmInst.Operand(1)),
literalValue{uint8(llvmInst.FloatPredicate())},
}
case llvm.Add, llvm.Sub, llvm.Mul, llvm.UDiv, llvm.SDiv, llvm.URem, llvm.SRem, llvm.Shl, llvm.LShr, llvm.AShr, llvm.And, llvm.Or, llvm.Xor:
// Integer binary operations.
inst.name = llvmInst.Name()
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
r.getValue(llvmInst.Operand(1)),
}
case llvm.SExt, llvm.ZExt, llvm.Trunc:
// Extend or shrink an integer size.
// No sign extension going on so easy to do.
// zext: [value, bitwidth]
// trunc: [value, bitwidth]
inst.name = llvmInst.Name()
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
literalValue{uint64(llvmInst.Type().IntTypeWidth())},
}
case llvm.SIToFP, llvm.UIToFP:
// Convert an integer to a floating point instruction.
// opcode: [value, bitwidth]
inst.name = llvmInst.Name()
inst.operands = []value{
r.getValue(llvmInst.Operand(0)),
literalValue{uint64(r.targetData.TypeAllocSize(llvmInst.Type()) * 8)},
}
default:
// Unknown instruction, which is already set in inst.opcode so
// is detectable.
// This error is handled when actually trying to interpret this
// instruction (to not trigger on code that won't be executed).
}
if inst.opcode == llvm.PHI {
// PHI nodes need to be treated specially, see the comment in
// interpreter.go for an explanation.
bb.phiNodes = append(bb.phiNodes, inst)
} else {
bb.instructions = append(bb.instructions, inst)
}
}
}
return fn
}
// instructionNameMap maps from instruction opcodes to instruction names. This
// can be useful for debug logging.
var instructionNameMap = [...]string{
llvm.Ret: "ret",
llvm.Br: "br",
llvm.Switch: "switch",
llvm.IndirectBr: "indirectbr",
llvm.Invoke: "invoke",
llvm.Unreachable: "unreachable",
// Standard Binary Operators
llvm.Add: "add",
llvm.FAdd: "fadd",
llvm.Sub: "sub",
llvm.FSub: "fsub",
llvm.Mul: "mul",
llvm.FMul: "fmul",
llvm.UDiv: "udiv",
llvm.SDiv: "sdiv",
llvm.FDiv: "fdiv",
llvm.URem: "urem",
llvm.SRem: "srem",
llvm.FRem: "frem",
// Logical Operators
llvm.Shl: "shl",
llvm.LShr: "lshr",
llvm.AShr: "ashr",
llvm.And: "and",
llvm.Or: "or",
llvm.Xor: "xor",
// Memory Operators
llvm.Alloca: "alloca",
llvm.Load: "load",
llvm.Store: "store",
llvm.GetElementPtr: "getelementptr",
// Cast Operators
llvm.Trunc: "trunc",
llvm.ZExt: "zext",
llvm.SExt: "sext",
llvm.FPToUI: "fptoui",
llvm.FPToSI: "fptosi",
llvm.UIToFP: "uitofp",
llvm.SIToFP: "sitofp",
llvm.FPTrunc: "fptrunc",
llvm.FPExt: "fpext",
llvm.PtrToInt: "ptrtoint",
llvm.IntToPtr: "inttoptr",
llvm.BitCast: "bitcast",
// Other Operators
llvm.ICmp: "icmp",
llvm.FCmp: "fcmp",
llvm.PHI: "phi",
llvm.Call: "call",
llvm.Select: "select",
llvm.VAArg: "vaarg",
llvm.ExtractElement: "extractelement",
llvm.InsertElement: "insertelement",
llvm.ShuffleVector: "shufflevector",
llvm.ExtractValue: "extractvalue",
llvm.InsertValue: "insertvalue",
}
|