1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
// Package interp is a partial evaluator of code run at package init time. See
// the README in this package for details.
package interp
import (
"encoding/binary"
"fmt"
"os"
"strings"
"time"
"github.com/tinygo-org/tinygo/compiler/llvmutil"
"tinygo.org/x/go-llvm"
)
// Enable extra checks, which should be disabled by default.
// This may help track down bugs by adding a few more sanity checks.
const checks = true
// runner contains all state related to one interp run.
type runner struct {
mod llvm.Module
targetData llvm.TargetData
builder llvm.Builder
pointerSize uint32 // cached pointer size from the TargetData
dataPtrType llvm.Type // often used type so created in advance
uintptrType llvm.Type // equivalent to uintptr in Go
maxAlign int // maximum alignment of an object, alignment of runtime.alloc() result
byteOrder binary.ByteOrder // big-endian or little-endian
debug bool // log debug messages
pkgName string // package name of the currently executing package
functionCache map[llvm.Value]*function // cache of compiled functions
objects []object // slice of objects in memory
globals map[llvm.Value]int // map from global to index in objects slice
start time.Time
timeout time.Duration
callsExecuted uint64
}
func newRunner(mod llvm.Module, timeout time.Duration, debug bool) *runner {
r := runner{
mod: mod,
targetData: llvm.NewTargetData(mod.DataLayout()),
byteOrder: llvmutil.ByteOrder(mod.Target()),
debug: debug,
functionCache: make(map[llvm.Value]*function),
objects: []object{{}},
globals: make(map[llvm.Value]int),
start: time.Now(),
timeout: timeout,
}
r.pointerSize = uint32(r.targetData.PointerSize())
r.dataPtrType = llvm.PointerType(mod.Context().Int8Type(), 0)
r.uintptrType = mod.Context().IntType(r.targetData.PointerSize() * 8)
r.maxAlign = r.targetData.PrefTypeAlignment(r.dataPtrType) // assume pointers are maximally aligned (this is not always the case)
return &r
}
// Dispose deallocates all allocated LLVM resources.
func (r *runner) dispose() {
r.targetData.Dispose()
r.targetData = llvm.TargetData{}
}
// Run evaluates runtime.initAll function as much as possible at compile time.
// Set debug to true if it should print output while running.
func Run(mod llvm.Module, timeout time.Duration, debug bool) error {
r := newRunner(mod, timeout, debug)
defer r.dispose()
initAll := mod.NamedFunction("runtime.initAll")
bb := initAll.EntryBasicBlock()
// Create a builder, to insert instructions that could not be evaluated at
// compile time.
r.builder = mod.Context().NewBuilder()
defer r.builder.Dispose()
// Create a dummy alloca in the entry block that we can set the insert point
// to. This is necessary because otherwise we might be removing the
// instruction (init call) that we are removing after successful
// interpretation.
r.builder.SetInsertPointBefore(bb.FirstInstruction())
dummy := r.builder.CreateAlloca(r.mod.Context().Int8Type(), "dummy")
r.builder.SetInsertPointBefore(dummy)
defer dummy.EraseFromParentAsInstruction()
// Get a list if init calls. A runtime.initAll might look something like this:
// func initAll() {
// unsafe.init()
// machine.init()
// runtime.init()
// }
// This function gets a list of these call instructions.
var initCalls []llvm.Value
for inst := bb.FirstInstruction(); !inst.IsNil(); inst = llvm.NextInstruction(inst) {
if inst == dummy {
continue
}
if !inst.IsAReturnInst().IsNil() {
break // ret void
}
if inst.IsACallInst().IsNil() || inst.CalledValue().IsAFunction().IsNil() {
return errorAt(inst, "interp: expected all instructions in "+initAll.Name()+" to be direct calls")
}
initCalls = append(initCalls, inst)
}
// Run initializers for each package. Once the package initializer is
// finished, the call to the package initializer can be removed.
for _, call := range initCalls {
initName := call.CalledValue().Name()
if !strings.HasSuffix(initName, ".init") {
return errorAt(call, "interp: expected all instructions in "+initAll.Name()+" to be *.init() calls")
}
r.pkgName = initName[:len(initName)-len(".init")]
fn := call.CalledValue()
if r.debug {
fmt.Fprintln(os.Stderr, "call:", fn.Name())
}
_, mem, callErr := r.run(r.getFunction(fn), nil, nil, " ")
call.EraseFromParentAsInstruction()
if callErr != nil {
if isRecoverableError(callErr.Err) {
if r.debug {
fmt.Fprintln(os.Stderr, "not interpreting", r.pkgName, "because of error:", callErr.Error())
}
// Remove instructions that were created as part of interpreting
// the package.
mem.revert()
// Create a call to the package initializer (which was
// previously deleted).
i8undef := llvm.Undef(r.dataPtrType)
r.builder.CreateCall(fn.GlobalValueType(), fn, []llvm.Value{i8undef}, "")
// Make sure that any globals touched by the package
// initializer, won't be accessed by later package initializers.
err := r.markExternalLoad(fn)
if err != nil {
return fmt.Errorf("failed to interpret package %s: %w", r.pkgName, err)
}
continue
}
return callErr
}
for index, obj := range mem.objects {
r.objects[index] = obj
}
}
r.pkgName = ""
// Update all global variables in the LLVM module.
mem := memoryView{r: r}
for i, obj := range r.objects {
if obj.llvmGlobal.IsNil() {
continue
}
if obj.buffer == nil {
continue
}
if obj.constant {
continue // constant buffers can't have been modified
}
initializer, err := obj.buffer.toLLVMValue(obj.llvmGlobal.GlobalValueType(), &mem)
if err == errInvalidPtrToIntSize {
// This can happen when a previous interp run did not have the
// correct LLVM type for a global and made something up. In that
// case, some fields could be written out as a series of (null)
// bytes even though they actually contain a pointer value.
// As a fallback, use asRawValue to get something of the correct
// memory layout.
initializer, err := obj.buffer.asRawValue(r).rawLLVMValue(&mem)
if err != nil {
return err
}
initializerType := initializer.Type()
newGlobal := llvm.AddGlobal(mod, initializerType, obj.llvmGlobal.Name()+".tmp")
newGlobal.SetInitializer(initializer)
newGlobal.SetLinkage(obj.llvmGlobal.Linkage())
newGlobal.SetAlignment(obj.llvmGlobal.Alignment())
// TODO: copy debug info, unnamed_addr, ...
obj.llvmGlobal.ReplaceAllUsesWith(newGlobal)
name := obj.llvmGlobal.Name()
obj.llvmGlobal.EraseFromParentAsGlobal()
newGlobal.SetName(name)
// Update interp-internal references.
delete(r.globals, obj.llvmGlobal)
obj.llvmGlobal = newGlobal
r.globals[newGlobal] = i
r.objects[i] = obj
continue
}
if err != nil {
return err
}
if checks && initializer.Type() != obj.llvmGlobal.GlobalValueType() {
panic("initializer type mismatch")
}
obj.llvmGlobal.SetInitializer(initializer)
}
return nil
}
// RunFunc evaluates a single package initializer at compile time.
// Set debug to true if it should print output while running.
func RunFunc(fn llvm.Value, timeout time.Duration, debug bool) error {
// Create and initialize *runner object.
mod := fn.GlobalParent()
r := newRunner(mod, timeout, debug)
defer r.dispose()
initName := fn.Name()
if !strings.HasSuffix(initName, ".init") {
return errorAt(fn, "interp: unexpected function name (expected *.init)")
}
r.pkgName = initName[:len(initName)-len(".init")]
// Create new function with the interp result.
newFn := llvm.AddFunction(mod, fn.Name()+".tmp", fn.GlobalValueType())
newFn.SetLinkage(fn.Linkage())
newFn.SetVisibility(fn.Visibility())
entry := mod.Context().AddBasicBlock(newFn, "entry")
// Create a builder, to insert instructions that could not be evaluated at
// compile time.
r.builder = mod.Context().NewBuilder()
defer r.builder.Dispose()
r.builder.SetInsertPointAtEnd(entry)
// Copy debug information.
subprogram := fn.Subprogram()
if !subprogram.IsNil() {
newFn.SetSubprogram(subprogram)
r.builder.SetCurrentDebugLocation(subprogram.SubprogramLine(), 0, subprogram, llvm.Metadata{})
}
// Run the initializer, filling the .init.tmp function.
if r.debug {
fmt.Fprintln(os.Stderr, "interp:", fn.Name())
}
_, pkgMem, callErr := r.run(r.getFunction(fn), nil, nil, " ")
if callErr != nil {
if isRecoverableError(callErr.Err) {
// Could not finish, but could recover from it.
if r.debug {
fmt.Fprintln(os.Stderr, "not interpreting", r.pkgName, "because of error:", callErr.Error())
}
newFn.EraseFromParentAsFunction()
return nil
}
return callErr
}
for index, obj := range pkgMem.objects {
r.objects[index] = obj
}
// Update globals with values determined while running the initializer above.
mem := memoryView{r: r}
for _, obj := range r.objects {
if obj.llvmGlobal.IsNil() {
continue
}
if obj.buffer == nil {
continue
}
if obj.constant {
continue // constant, so can't have been modified
}
initializer, err := obj.buffer.toLLVMValue(obj.llvmGlobal.GlobalValueType(), &mem)
if err != nil {
return err
}
if checks && initializer.Type() != obj.llvmGlobal.GlobalValueType() {
panic("initializer type mismatch")
}
obj.llvmGlobal.SetInitializer(initializer)
}
// Finalize: remove the old init function and replace it with the new
// (.init.tmp) function.
r.builder.CreateRetVoid()
fnName := fn.Name()
fn.ReplaceAllUsesWith(newFn)
fn.EraseFromParentAsFunction()
newFn.SetName(fnName)
return nil
}
// getFunction returns the compiled version of the given LLVM function. It
// compiles the function if necessary and caches the result.
func (r *runner) getFunction(llvmFn llvm.Value) *function {
if fn, ok := r.functionCache[llvmFn]; ok {
return fn
}
fn := r.compileFunction(llvmFn)
r.functionCache[llvmFn] = fn
return fn
}
// markExternalLoad marks the given llvmValue as being loaded externally. This
// is primarily used to mark package initializers that could not be run at
// compile time. As an example, a package initialize might store to a global
// variable. Another package initializer might read from the same global
// variable. By marking this function as being run at runtime, that load
// instruction will need to be run at runtime instead of at compile time.
func (r *runner) markExternalLoad(llvmValue llvm.Value) error {
mem := memoryView{r: r}
err := mem.markExternalLoad(llvmValue)
if err != nil {
return err
}
for index, obj := range mem.objects {
if obj.marked > r.objects[index].marked {
r.objects[index].marked = obj.marked
}
}
return nil
}
|