1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
package main
import (
"debug/elf"
"io/ioutil"
"os"
"path/filepath"
"sort"
"github.com/marcinbor85/gohex"
)
// ObjcopyError is an error returned by functions that act like objcopy.
type ObjcopyError struct {
Op string
Err error
}
func (e ObjcopyError) Error() string {
if e.Err == nil {
return e.Op
}
return e.Op + ": " + e.Err.Error()
}
type ProgSlice []*elf.Prog
func (s ProgSlice) Len() int { return len(s) }
func (s ProgSlice) Less(i, j int) bool { return s[i].Paddr < s[j].Paddr }
func (s ProgSlice) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// ExtractROM extracts a firmware image and the first load address from the
// given ELF file. It tries to emulate the behavior of objcopy.
func ExtractROM(path string) (uint64, []byte, error) {
f, err := elf.Open(path)
if err != nil {
return 0, nil, ObjcopyError{"failed to open ELF file to extract text segment", err}
}
defer f.Close()
// The GNU objcopy command does the following for firmware extraction (from
// the man page):
// > When objcopy generates a raw binary file, it will essentially produce a
// > memory dump of the contents of the input object file. All symbols and
// > relocation information will be discarded. The memory dump will start at
// > the load address of the lowest section copied into the output file.
// Find the lowest section address.
startAddr := ^uint64(0)
for _, section := range f.Sections {
if section.Type != elf.SHT_PROGBITS || section.Flags&elf.SHF_ALLOC == 0 {
continue
}
if section.Addr < startAddr {
startAddr = section.Addr
}
}
progs := make(ProgSlice, 0, 2)
for _, prog := range f.Progs {
if prog.Type != elf.PT_LOAD || prog.Filesz == 0 {
continue
}
progs = append(progs, prog)
}
if len(progs) == 0 {
return 0, nil, ObjcopyError{"file does not contain ROM segments: " + path, nil}
}
sort.Sort(progs)
var rom []byte
for _, prog := range progs {
if prog.Paddr != progs[0].Paddr+uint64(len(rom)) {
return 0, nil, ObjcopyError{"ROM segments are non-contiguous: " + path, nil}
}
data, err := ioutil.ReadAll(prog.Open())
if err != nil {
return 0, nil, ObjcopyError{"failed to extract segment from ELF file: " + path, err}
}
rom = append(rom, data...)
}
if progs[0].Paddr < startAddr {
// The lowest memory address is before the first section. This means
// that there is some extra data loaded at the start of the image that
// should be discarded.
// Example: ELF files where .text doesn't start at address 0 because
// there is a bootloader at the start.
return startAddr, rom[startAddr-progs[0].Paddr:], nil
} else {
return progs[0].Paddr, rom, nil
}
}
// Objcopy converts an ELF file to a different (simpler) output file format:
// .bin or .hex. It extracts only the .text section.
func Objcopy(infile, outfile string) error {
f, err := os.OpenFile(outfile, os.O_RDWR|os.O_CREATE|os.O_TRUNC, 0666)
if err != nil {
return err
}
defer f.Close()
// Read the .text segment.
addr, data, err := ExtractROM(infile)
if err != nil {
return err
}
// Write to the file, in the correct format.
switch filepath.Ext(outfile) {
case ".bin":
// The address is not stored in a .bin file (therefore you
// should use .hex files in most cases).
_, err := f.Write(data)
return err
case ".hex":
mem := gohex.NewMemory()
err := mem.AddBinary(uint32(addr), data)
if err != nil {
return ObjcopyError{"failed to create .hex file", err}
}
mem.DumpIntelHex(f, 16) // TODO: handle error
return nil
default:
panic("unreachable")
}
}
|