aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/machine/machine_atmega328p.go
blob: a7d5d0c20f4b7e094d8af6b8d7989e03e60eadfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//go:build avr && atmega328p
// +build avr,atmega328p

package machine

import (
	"device/avr"
	"runtime/interrupt"
	"runtime/volatile"
)

const irq_USART0_RX = avr.IRQ_USART_RX

// getPortMask returns the PORTx register and mask for the pin.
func (p Pin) getPortMask() (*volatile.Register8, uint8) {
	switch {
	case p >= PB0 && p <= PB7: // port B
		return avr.PORTB, 1 << uint8(p-portB)
	case p >= PC0 && p <= PC7: // port C
		return avr.PORTC, 1 << uint8(p-portC)
	default: // port D
		return avr.PORTD, 1 << uint8(p-portD)
	}
}

// PWM is one PWM peripheral, which consists of a counter and two output
// channels (that can be connected to two fixed pins). You can set the frequency
// using SetPeriod, but only for all the channels in this PWM peripheral at
// once.
type PWM struct {
	num uint8
}

var (
	Timer0 = PWM{0} // 8 bit timer for PD5 and PD6
	Timer1 = PWM{1} // 16 bit timer for PB1 and PB2
	Timer2 = PWM{2} // 8 bit timer for PB3 and PD3
)

// Configure enables and configures this PWM.
//
// For the two 8 bit timers, there is only a limited number of periods
// available, namely the CPU frequency divided by 256 and again divided by 1, 8,
// 64, 256, or 1024. For a MCU running at 16MHz, this would be a period of 16µs,
// 128µs, 1024µs, 4096µs, or 16384µs.
func (pwm PWM) Configure(config PWMConfig) error {
	switch pwm.num {
	case 0, 2: // 8-bit timers (Timer/counter 0 and Timer/counter 2)
		// Calculate the timer prescaler.
		// While we could configure a flexible top, that would sacrifice one of
		// the PWM output compare registers and thus a PWM channel. I've chosen
		// to instead limit this timer to a fixed number of frequencies.
		var prescaler uint8
		switch config.Period {
		case 0, (uint64(1e9) * 256 * 1) / uint64(CPUFrequency()):
			prescaler = 1
		case (uint64(1e9) * 256 * 8) / uint64(CPUFrequency()):
			prescaler = 2
		case (uint64(1e9) * 256 * 64) / uint64(CPUFrequency()):
			prescaler = 3
		case (uint64(1e9) * 256 * 256) / uint64(CPUFrequency()):
			prescaler = 4
		case (uint64(1e9) * 256 * 1024) / uint64(CPUFrequency()):
			prescaler = 5
		default:
			return ErrPWMPeriodTooLong
		}

		if pwm.num == 0 {
			avr.TCCR0B.Set(prescaler)
			// Set the PWM mode to fast PWM (mode = 3).
			avr.TCCR0A.Set(avr.TCCR0A_WGM00 | avr.TCCR0A_WGM01)
			// monotonic timer is using the same time as PWM:0
			// we must adust internal settings of monotonic timer when PWM:0 settings changed
			adjustMonotonicTimer()
		} else {
			avr.TCCR2B.Set(prescaler)
			// Set the PWM mode to fast PWM (mode = 3).
			avr.TCCR2A.Set(avr.TCCR2A_WGM20 | avr.TCCR2A_WGM21)
		}
	case 1: // Timer/counter 1
		// The top value is the number of PWM ticks a PWM period takes. It is
		// initially picked assuming an unlimited counter top and no PWM
		// prescaler.
		var top uint64
		if config.Period == 0 {
			// Use a top appropriate for LEDs. Picking a relatively low period
			// here (0xff) for consistency with the other timers.
			top = 0xff
		} else {
			// The formula below calculates the following formula, optimized:
			//     top = period * (CPUFrequency() / 1e9)
			// By dividing the CPU frequency first (an operation that is easily
			// optimized away) the period has less chance of overflowing.
			top = config.Period * (uint64(CPUFrequency()) / 1000000) / 1000
		}

		avr.TCCR1A.Set(avr.TCCR1A_WGM11)

		// The ideal PWM period may be larger than would fit in the PWM counter,
		// which is 16 bits (see maxTop). Therefore, try to make the PWM clock
		// speed lower with a prescaler to make the top value fit the maximum
		// top value.
		const maxTop = 0x10000
		switch {
		case top <= maxTop:
			avr.TCCR1B.Set(3<<3 | 1) // no prescaling
		case top/8 <= maxTop:
			avr.TCCR1B.Set(3<<3 | 2) // divide by 8
			top /= 8
		case top/64 <= maxTop:
			avr.TCCR1B.Set(3<<3 | 3) // divide by 64
			top /= 64
		case top/256 <= maxTop:
			avr.TCCR1B.Set(3<<3 | 4) // divide by 256
			top /= 256
		case top/1024 <= maxTop:
			avr.TCCR1B.Set(3<<3 | 5) // divide by 1024
			top /= 1024
		default:
			return ErrPWMPeriodTooLong
		}

		// A top of 0x10000 is at 100% duty cycle. Subtract one because the
		// counter counts from 0, not 1 (avoiding an off-by-one).
		top -= 1

		avr.ICR1H.Set(uint8(top >> 8))
		avr.ICR1L.Set(uint8(top))
	}
	return nil
}

// SetPeriod updates the period of this PWM peripheral.
// To set a particular frequency, use the following formula:
//
//	period = 1e9 / frequency
//
// If you use a period of 0, a period that works well for LEDs will be picked.
//
// SetPeriod will not change the prescaler, but also won't change the current
// value in any of the channels. This means that you may need to update the
// value for the particular channel.
//
// Note that you cannot pick any arbitrary period after the PWM peripheral has
// been configured. If you want to switch between frequencies, pick the lowest
// frequency (longest period) once when calling Configure and adjust the
// frequency here as needed.
func (pwm PWM) SetPeriod(period uint64) error {
	if pwm.num != 1 {
		return ErrPWMPeriodTooLong // TODO better error message
	}

	// The top value is the number of PWM ticks a PWM period takes. It is
	// initially picked assuming an unlimited counter top and no PWM
	// prescaler.
	var top uint64
	if period == 0 {
		// Use a top appropriate for LEDs. Picking a relatively low period
		// here (0xff) for consistency with the other timers.
		top = 0xff
	} else {
		// The formula below calculates the following formula, optimized:
		//     top = period * (CPUFrequency() / 1e9)
		// By dividing the CPU frequency first (an operation that is easily
		// optimized away) the period has less chance of overflowing.
		top = period * (uint64(CPUFrequency()) / 1000000) / 1000
	}

	prescaler := avr.TCCR1B.Get() & 0x7
	switch prescaler {
	case 1:
		top /= 1
	case 2:
		top /= 8
	case 3:
		top /= 64
	case 4:
		top /= 256
	case 5:
		top /= 1024
	}

	// A top of 0x10000 is at 100% duty cycle. Subtract one because the counter
	// counts from 0, not 1 (avoiding an off-by-one).
	top -= 1

	if top > 0xffff {
		return ErrPWMPeriodTooLong
	}

	// Warning: this change is not atomic!
	avr.ICR1H.Set(uint8(top >> 8))
	avr.ICR1L.Set(uint8(top))

	// ... and because of that, set the counter back to zero to avoid most of
	// the effects of this non-atomicity.
	avr.TCNT1H.Set(0)
	avr.TCNT1L.Set(0)

	return nil
}

// Top returns the current counter top, for use in duty cycle calculation. It
// will only change with a call to Configure or SetPeriod, otherwise it is
// constant.
//
// The value returned here is hardware dependent. In general, it's best to treat
// it as an opaque value that can be divided by some number and passed to Set
// (see Set documentation for more information).
func (pwm PWM) Top() uint32 {
	if pwm.num == 1 {
		// Timer 1 has a configurable top value.
		low := avr.ICR1L.Get()
		high := avr.ICR1H.Get()
		return uint32(high)<<8 | uint32(low) + 1
	}
	// Other timers go from 0 to 0xff (0x100 or 256 in total).
	return 256
}

// Counter returns the current counter value of the timer in this PWM
// peripheral. It may be useful for debugging.
func (pwm PWM) Counter() uint32 {
	switch pwm.num {
	case 0:
		return uint32(avr.TCNT0.Get())
	case 1:
		mask := interrupt.Disable()
		low := avr.TCNT1L.Get()
		high := avr.TCNT1H.Get()
		interrupt.Restore(mask)
		return uint32(high)<<8 | uint32(low)
	case 2:
		return uint32(avr.TCNT2.Get())
	}
	// Unknown PWM.
	return 0
}

// Period returns the used PWM period in nanoseconds. It might deviate slightly
// from the configured period due to rounding.
func (pwm PWM) Period() uint64 {
	var prescaler uint8
	switch pwm.num {
	case 0:
		prescaler = avr.TCCR0B.Get() & 0x7
	case 1:
		prescaler = avr.TCCR1B.Get() & 0x7
	case 2:
		prescaler = avr.TCCR2B.Get() & 0x7
	}
	top := uint64(pwm.Top())
	switch prescaler {
	case 1: // prescaler 1
		return 1 * top * 1000 / uint64(CPUFrequency()/1e6)
	case 2: // prescaler 8
		return 8 * top * 1000 / uint64(CPUFrequency()/1e6)
	case 3: // prescaler 64
		return 64 * top * 1000 / uint64(CPUFrequency()/1e6)
	case 4: // prescaler 256
		return 256 * top * 1000 / uint64(CPUFrequency()/1e6)
	case 5: // prescaler 1024
		return 1024 * top * 1000 / uint64(CPUFrequency()/1e6)
	default: // unknown clock source
		return 0
	}
}

// Channel returns a PWM channel for the given pin.
func (pwm PWM) Channel(pin Pin) (uint8, error) {
	pin.Configure(PinConfig{Mode: PinOutput})
	pin.Low()
	switch pwm.num {
	case 0:
		switch pin {
		case PD6: // channel A
			avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
			return 0, nil
		case PD5: // channel B
			avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
			return 1, nil
		}
	case 1:
		switch pin {
		case PB1: // channel A
			avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
			return 0, nil
		case PB2: // channel B
			avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
			return 1, nil
		}
	case 2:
		switch pin {
		case PB3: // channel A
			avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
			return 0, nil
		case PD3: // channel B
			avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
			return 1, nil
		}
	}
	return 0, ErrInvalidOutputPin
}

// SetInverting sets whether to invert the output of this channel.
// Without inverting, a 25% duty cycle would mean the output is high for 25% of
// the time and low for the rest. Inverting flips the output as if a NOT gate
// was placed at the output, meaning that the output would be 25% low and 75%
// high with a duty cycle of 25%.
//
// Note: the invert state may not be applied on the AVR until the next call to
// ch.Set().
func (pwm PWM) SetInverting(channel uint8, inverting bool) {
	switch pwm.num {
	case 0:
		switch channel {
		case 0: // channel A
			if inverting {
				avr.PORTB.SetBits(1 << 6) // PB6 high
				avr.TCCR0A.SetBits(avr.TCCR0A_COM0A0)
			} else {
				avr.PORTB.ClearBits(1 << 6) // PB6 low
				avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A0)
			}
		case 1: // channel B
			if inverting {
				avr.PORTB.SetBits(1 << 5) // PB5 high
				avr.TCCR0A.SetBits(avr.TCCR0A_COM0B0)
			} else {
				avr.PORTB.ClearBits(1 << 5) // PB5 low
				avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B0)
			}
		}
	case 1:
		// Note: the COM1A0/COM1B0 bit is not set with the configuration below.
		// It will be set the following call to Set(), however.
		switch channel {
		case 0: // channel A, PB1
			if inverting {
				avr.PORTB.SetBits(1 << 1) // PB1 high
			} else {
				avr.PORTB.ClearBits(1 << 1) // PB1 low
			}
		case 1: // channel B, PB2
			if inverting {
				avr.PORTB.SetBits(1 << 2) // PB2 high
			} else {
				avr.PORTB.ClearBits(1 << 2) // PB2 low
			}
		}
	case 2:
		switch channel {
		case 0: // channel A
			if inverting {
				avr.PORTB.SetBits(1 << 3) // PB3 high
				avr.TCCR2A.SetBits(avr.TCCR2A_COM2A0)
			} else {
				avr.PORTB.ClearBits(1 << 3) // PB3 low
				avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A0)
			}
		case 1: // channel B
			if inverting {
				avr.PORTD.SetBits(1 << 3) // PD3 high
				avr.TCCR2A.SetBits(avr.TCCR2A_COM2B0)
			} else {
				avr.PORTD.ClearBits(1 << 3) // PD3 low
				avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B0)
			}
		}
	}
}

// Set updates the channel value. This is used to control the channel duty
// cycle, in other words the fraction of time the channel output is high (or low
// when inverted). For example, to set it to a 25% duty cycle, use:
//
//	pwm.Set(channel, pwm.Top() / 4)
//
// pwm.Set(channel, 0) will set the output to low and pwm.Set(channel,
// pwm.Top()) will set the output to high, assuming the output isn't inverted.
func (pwm PWM) Set(channel uint8, value uint32) {
	switch pwm.num {
	case 0:
		value := uint16(value)
		switch channel {
		case 0: // channel A
			if value == 0 {
				avr.TCCR0A.ClearBits(avr.TCCR0A_COM0A1)
			} else {
				avr.OCR0A.Set(uint8(value - 1))
				avr.TCCR0A.SetBits(avr.TCCR0A_COM0A1)
			}
		case 1: // channel B
			if value == 0 {
				avr.TCCR0A.ClearBits(avr.TCCR0A_COM0B1)
			} else {
				avr.OCR0B.Set(uint8(value) - 1)
				avr.TCCR0A.SetBits(avr.TCCR0A_COM0B1)
			}
		}
		// monotonic timer is using the same time as PWM:0
		// we must adust internal settings of monotonic timer when PWM:0 settings changed
		adjustMonotonicTimer()
	case 1:
		mask := interrupt.Disable()
		switch channel {
		case 0: // channel A, PB1
			if value == 0 {
				avr.TCCR1A.ClearBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
			} else {
				value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
				avr.OCR1AH.Set(uint8(value >> 8))
				avr.OCR1AL.Set(uint8(value))
				if avr.PORTB.HasBits(1 << 1) { // is PB1 high?
					// Yes, set the inverting bit.
					avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1 | avr.TCCR1A_COM1A0)
				} else {
					// No, output is non-inverting.
					avr.TCCR1A.SetBits(avr.TCCR1A_COM1A1)
				}
			}
		case 1: // channel B, PB2
			if value == 0 {
				avr.TCCR1A.ClearBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
			} else {
				value := uint16(value) - 1 // yes, this is safe (it relies on underflow)
				avr.OCR1BH.Set(uint8(value >> 8))
				avr.OCR1BL.Set(uint8(value))
				if avr.PORTB.HasBits(1 << 2) { // is PB2 high?
					// Yes, set the inverting bit.
					avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1 | avr.TCCR1A_COM1B0)
				} else {
					// No, output is non-inverting.
					avr.TCCR1A.SetBits(avr.TCCR1A_COM1B1)
				}
			}
		}
		interrupt.Restore(mask)
	case 2:
		value := uint16(value)
		switch channel {
		case 0: // channel A
			if value == 0 {
				avr.TCCR2A.ClearBits(avr.TCCR2A_COM2A1)
			} else {
				avr.OCR2A.Set(uint8(value - 1))
				avr.TCCR2A.SetBits(avr.TCCR2A_COM2A1)
			}
		case 1: // channel B
			if value == 0 {
				avr.TCCR2A.ClearBits(avr.TCCR2A_COM2B1)
			} else {
				avr.OCR2B.Set(uint8(value - 1))
				avr.TCCR2A.SetBits(avr.TCCR2A_COM2B1)
			}
		}
	}
}

// SPI configuration
var SPI0 = SPI{
	spcr: avr.SPCR,
	spdr: avr.SPDR,
	spsr: avr.SPSR,
	sck:  PB5,
	sdo:  PB3,
	sdi:  PB4,
	cs:   PB2}