1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
|
//go:build esp32c3
package machine
// On the C3 variant, SPI2 is a general purpose SPI controller. SPI0 and SPI1
// are used internally to access the ESP32-C3’s attached flash memory. Due to
// different registers between SPI2 and the other SPI ports, this driver
// currently supports only the the general purpose FSPI SPI2 controller.
// https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/api-reference/peripherals/spi_master.html
import (
"device/esp"
"errors"
"runtime/volatile"
"unsafe"
)
const (
SPI_MODE0 = uint8(0)
SPI_MODE1 = uint8(1)
SPI_MODE2 = uint8(2)
SPI_MODE3 = uint8(3)
FSPICLK_IN_IDX = uint32(63)
FSPICLK_OUT_IDX = uint32(63)
FSPIQ_IN_IDX = uint32(64)
FSPIQ_OUT_IDX = uint32(64)
FSPID_IN_IDX = uint32(65)
FSPID_OUT_IDX = uint32(65)
FSPIHD_IN_IDX = uint32(66)
FSPIHD_OUT_IDX = uint32(66)
FSPIWP_IN_IDX = uint32(67)
FSPIWP_OUT_IDX = uint32(67)
FSPICS0_IN_IDX = uint32(68)
FSPICS0_OUT_IDX = uint32(68)
FSPICS1_OUT_IDX = uint32(69)
FSPICS2_OUT_IDX = uint32(70)
FSPICS3_OUT_IDX = uint32(71)
FSPICS4_OUT_IDX = uint32(72)
FSPICS5_OUT_IDX = uint32(73)
)
var (
ErrInvalidSPIBus = errors.New("machine: SPI bus is invalid")
ErrInvalidSPIMode = errors.New("machine: SPI mode is invalid")
)
// Serial Peripheral Interface on the ESP32-C3.
type SPI struct {
Bus *esp.SPI2_Type
}
var (
// SPI0 and SPI1 are reserved for use by the caching system etc.
SPI2 = SPI{esp.SPI2}
)
// SPIConfig is used to store config info for SPI.
type SPIConfig struct {
Frequency uint32
SCK Pin // Serial Clock
SDO Pin // Serial Data Out (MOSI)
SDI Pin // Serial Data In (MISO)
CS Pin // Chip Select (optional)
LSBFirst bool // MSB is default
Mode uint8 // SPI_MODE0 is default
}
// Compute the SPI bus frequency from the CPU frequency.
func freqToClockDiv(hz uint32) uint32 {
fcpu := CPUFrequency()
if hz >= fcpu { // maximum frequency
return 1 << 31
}
if hz < (fcpu / (16 * 64)) { // minimum frequency
return 15<<18 | 63<<12 | 31<<6 | 63 // pre=15, n=63
}
// iterate looking for an exact match
// or iterate all 16 prescaler options
// looking for the smallest error
var bestPre, bestN, bestErr uint32
bestN = 1
bestErr = 0xffffffff
q := uint32(float32(pplClockFreq)/float32(hz) + float32(0.5))
for p := uint32(0); p < 16; p++ {
n := q/(p+1) - 1
if n < 1 { // prescaler became too large, stop enum
break
}
if n > 63 { // prescaler too small, skip to next
continue
}
freq := fcpu / ((p + 1) * (n + 1))
if freq == hz { // exact match
return p<<18 | n<<12 | (n/2)<<6 | n
}
var err uint32
if freq < hz {
err = hz - freq
} else {
err = freq - hz
}
if err < bestErr {
bestErr = err
bestPre = p
bestN = n
}
}
return bestPre<<18 | bestN<<12 | (bestN/2)<<6 | bestN
}
// Configure and make the SPI peripheral ready to use.
func (spi SPI) Configure(config SPIConfig) error {
// right now this is only setup to work for the esp32c3 spi2 bus
if spi.Bus != esp.SPI2 {
return ErrInvalidSPIBus
}
// periph module reset
esp.SYSTEM.SetPERIP_RST_EN0_SPI2_RST(1)
esp.SYSTEM.SetPERIP_RST_EN0_SPI2_RST(0)
// periph module enable
esp.SYSTEM.SetPERIP_CLK_EN0_SPI2_CLK_EN(1)
esp.SYSTEM.SetPERIP_RST_EN0_SPI2_RST(0)
// init the spi2 bus
spi.Bus.SLAVE.Set(0)
spi.Bus.MISC.Set(0)
spi.Bus.USER.Set(0)
spi.Bus.USER1.Set(0)
spi.Bus.CTRL.Set(0)
spi.Bus.CLK_GATE.Set(0)
spi.Bus.DMA_CONF.Set(0)
spi.Bus.SetDMA_CONF_RX_AFIFO_RST(1)
spi.Bus.SetDMA_CONF_BUF_AFIFO_RST(1)
spi.Bus.CLOCK.Set(0)
// clear data buf
spi.Bus.SetW0(0)
spi.Bus.SetW1(0)
spi.Bus.SetW2(0)
spi.Bus.SetW3(0)
spi.Bus.SetW4(0)
spi.Bus.SetW5(0)
spi.Bus.SetW6(0)
spi.Bus.SetW7(0)
spi.Bus.SetW8(0)
spi.Bus.SetW9(0)
spi.Bus.SetW10(0)
spi.Bus.SetW11(0)
spi.Bus.SetW12(0)
spi.Bus.SetW13(0)
spi.Bus.SetW14(0)
spi.Bus.SetW15(0)
// start the spi2 bus
spi.Bus.SetCLK_GATE_CLK_EN(1)
spi.Bus.SetCLK_GATE_MST_CLK_SEL(1)
spi.Bus.SetCLK_GATE_MST_CLK_ACTIVE(1)
spi.Bus.SetDMA_CONF_SLV_TX_SEG_TRANS_CLR_EN(1)
spi.Bus.SetDMA_CONF_SLV_RX_SEG_TRANS_CLR_EN(1)
spi.Bus.SetDMA_CONF_DMA_SLV_SEG_TRANS_EN(0)
spi.Bus.SetUSER_USR_MOSI(1)
spi.Bus.SetUSER_USR_MISO(1)
spi.Bus.SetUSER_DOUTDIN(1)
// set spi2 data mode
switch config.Mode {
case SPI_MODE0:
spi.Bus.SetMISC_CK_IDLE_EDGE(0)
spi.Bus.SetUSER_CK_OUT_EDGE(0)
case SPI_MODE1:
spi.Bus.SetMISC_CK_IDLE_EDGE(0)
spi.Bus.SetUSER_CK_OUT_EDGE(1)
case SPI_MODE2:
spi.Bus.SetMISC_CK_IDLE_EDGE(1)
spi.Bus.SetUSER_CK_OUT_EDGE(1)
case SPI_MODE3:
spi.Bus.SetMISC_CK_IDLE_EDGE(1)
spi.Bus.SetUSER_CK_OUT_EDGE(0)
default:
return ErrInvalidSPIMode
}
// set spi2 bit order
if config.LSBFirst {
spi.Bus.SetCTRL_WR_BIT_ORDER(1) // LSB first
spi.Bus.SetCTRL_RD_BIT_ORDER(1)
} else {
spi.Bus.SetCTRL_WR_BIT_ORDER(0) // MSB first
spi.Bus.SetCTRL_RD_BIT_ORDER(0)
}
// configure SPI bus clock
spi.Bus.CLOCK.Set(freqToClockDiv(config.Frequency))
// configure esp32c3 gpio pin matrix
config.SDI.Configure(PinConfig{Mode: PinInput})
inFunc(FSPIQ_IN_IDX).Set(esp.GPIO_FUNC_IN_SEL_CFG_SEL | uint32(config.SDI))
config.SDO.Configure(PinConfig{Mode: PinOutput})
config.SDO.outFunc().Set(FSPID_OUT_IDX)
config.SCK.Configure(PinConfig{Mode: PinOutput})
config.SCK.outFunc().Set(FSPICLK_OUT_IDX)
if config.CS != NoPin {
config.CS.Configure(PinConfig{Mode: PinOutput})
config.CS.outFunc().Set(FSPICS0_OUT_IDX)
}
return nil
}
// Transfer writes/reads a single byte using the SPI interface. If you need to
// transfer larger amounts of data, Tx will be faster.
func (spi SPI) Transfer(w byte) (byte, error) {
spi.Bus.SetMS_DLEN_MS_DATA_BITLEN(7)
spi.Bus.SetW0(uint32(w))
// Send/receive byte.
spi.Bus.SetCMD_UPDATE(1)
for spi.Bus.GetCMD_UPDATE() != 0 {
}
spi.Bus.SetCMD_USR(1)
for spi.Bus.GetCMD_USR() != 0 {
}
// The received byte is stored in W0.
return byte(spi.Bus.GetW0()), nil
}
// Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read
// interface, there must always be the same number of bytes written as bytes read.
// This is accomplished by sending zero bits if r is bigger than w or discarding
// the incoming data if w is bigger than r.
func (spi SPI) Tx(w, r []byte) error {
toTransfer := len(w)
if len(r) > toTransfer {
toTransfer = len(r)
}
for toTransfer > 0 {
// Chunk 64 bytes at a time.
chunkSize := toTransfer
if chunkSize > 64 {
chunkSize = 64
}
// Fill tx buffer.
transferWords := (*[16]volatile.Register32)(unsafe.Pointer(uintptr(unsafe.Pointer(&spi.Bus.W0))))
if len(w) >= 64 {
// We can fill the entire 64-byte transfer buffer with data.
// This loop is slightly faster than the loop below.
for i := 0; i < 16; i++ {
word := uint32(w[i*4]) | uint32(w[i*4+1])<<8 | uint32(w[i*4+2])<<16 | uint32(w[i*4+3])<<24
transferWords[i].Set(word)
}
} else {
// We can't fill the entire transfer buffer, so we need to be a bit
// more careful.
// Note that parts of the transfer buffer that aren't used still
// need to be set to zero, otherwise we might be transferring
// garbage from a previous transmission if w is smaller than r.
for i := 0; i < 16; i++ {
var word uint32
if i*4+3 < len(w) {
word |= uint32(w[i*4+3]) << 24
}
if i*4+2 < len(w) {
word |= uint32(w[i*4+2]) << 16
}
if i*4+1 < len(w) {
word |= uint32(w[i*4+1]) << 8
}
if i*4+0 < len(w) {
word |= uint32(w[i*4+0]) << 0
}
transferWords[i].Set(word)
}
}
// Do the transfer.
spi.Bus.SetMS_DLEN_MS_DATA_BITLEN(uint32(chunkSize)*8 - 1)
spi.Bus.SetCMD_UPDATE(1)
for spi.Bus.GetCMD_UPDATE() != 0 {
}
spi.Bus.SetCMD_USR(1)
for spi.Bus.GetCMD_USR() != 0 {
}
// Read rx buffer.
rxSize := 64
if rxSize > len(r) {
rxSize = len(r)
}
for i := 0; i < rxSize; i++ {
r[i] = byte(transferWords[i/4].Get() >> ((i % 4) * 8))
}
// Cut off some part of the output buffer so the next iteration we will
// only send the remaining bytes.
if len(w) < chunkSize {
w = nil
} else {
w = w[chunkSize:]
}
if len(r) < chunkSize {
r = nil
} else {
r = r[chunkSize:]
}
toTransfer -= chunkSize
}
return nil
}
|