1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
//go:build mimxrt1062
package machine
// I2C peripheral abstraction layer for the MIMXRT1062
import (
"device/nxp"
)
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
SDA Pin
SCL Pin
}
type I2C struct {
Bus *nxp.LPI2C_Type
// these pins are initialized by each global I2C variable declared in the
// board_teensy4x.go file according to the board manufacturer's default pin
// mapping. they can be overridden with the I2CConfig argument given to
// (*I2C) Configure(I2CConfig).
sda, scl Pin
// these hold the input selector ("daisy chain") values that select which pins
// are connected to the LPI2C device, and should be defined where the I2C
// instance is declared (e.g., in the board definition). see the godoc
// comments on type muxSelect for more details.
muxSDA, muxSCL muxSelect
}
type i2cDirection bool
const (
directionWrite i2cDirection = false
directionRead i2cDirection = true
)
func (dir i2cDirection) shift(addr uint16) uint32 {
if addr <<= 1; dir == directionRead {
addr |= 1
}
return uint32(addr) & 0xFF
}
// I2C enumerated types
type (
resultFlag uint32
statusFlag uint32
transferFlag uint32
commandFlag uint32
stateFlag uint32
)
const (
// general purpose results
resultSuccess resultFlag = 0x0 // success
resultFail resultFlag = 0x1 // fail
resultReadOnly resultFlag = 0x2 // read only failure
resultOutOfRange resultFlag = 0x3 // out of range access
resultInvalidArgument resultFlag = 0x4 // invalid argument check
// I2C-specific results
resultBusy resultFlag = 0x0384 + 0x0 // the controller is already performing a transfer
resultIdle resultFlag = 0x0384 + 0x1 // the peripheral driver is idle
resultNak resultFlag = 0x0384 + 0x2 // the peripheral device sent a NAK in response to a byte
resultFifoError resultFlag = 0x0384 + 0x3 // FIFO under run or overrun
resultBitError resultFlag = 0x0384 + 0x4 // transferred bit was not seen on the bus
resultArbitrationLost resultFlag = 0x0384 + 0x5 // arbitration lost error
resultPinLowTimeout resultFlag = 0x0384 + 0x6 // SCL or SDA were held low longer than the timeout
resultNoTransferInProgress resultFlag = 0x0384 + 0x7 // attempt to abort a transfer when one is not in progress
resultDmaRequestFail resultFlag = 0x0384 + 0x8 // DMA request failed
resultTimeout resultFlag = 0x0384 + 0x9 // timeout polling status flags
)
const (
statusTxReady statusFlag = nxp.LPI2C_MSR_TDF // transmit data flag
statusRxReady statusFlag = nxp.LPI2C_MSR_RDF // receive data flag
statusEndOfPacket statusFlag = nxp.LPI2C_MSR_EPF // end Packet flag
statusStopDetect statusFlag = nxp.LPI2C_MSR_SDF // stop detect flag
statusNackDetect statusFlag = nxp.LPI2C_MSR_NDF // NACK detect flag
statusArbitrationLost statusFlag = nxp.LPI2C_MSR_ALF // arbitration lost flag
statusFifoErr statusFlag = nxp.LPI2C_MSR_FEF // FIFO error flag
statusPinLowTimeout statusFlag = nxp.LPI2C_MSR_PLTF // pin low timeout flag
statusI2CDataMatch statusFlag = nxp.LPI2C_MSR_DMF // data match flag
statusBusy statusFlag = nxp.LPI2C_MSR_MBF // busy flag
statusBusBusy statusFlag = nxp.LPI2C_MSR_BBF // bus busy flag
// all flags which are cleared by the driver upon starting a transfer
statusClear statusFlag = statusEndOfPacket | statusStopDetect | statusNackDetect |
statusArbitrationLost | statusFifoErr | statusPinLowTimeout | statusI2CDataMatch
// IRQ sources enabled by the non-blocking transactional API
statusIrq statusFlag = statusArbitrationLost | statusTxReady | statusRxReady |
statusStopDetect | statusNackDetect | statusPinLowTimeout | statusFifoErr
// errors to check for
statusError statusFlag = statusNackDetect | statusArbitrationLost | statusFifoErr |
statusPinLowTimeout
)
// LPI2C transfer modes
const (
transferDefault transferFlag = 0x0 // transfer starts with a start signal, stops with a stop signal
transferNoStart transferFlag = 0x1 // don't send a start condition, address, and sub address
transferRepeatedStart transferFlag = 0x2 // send a repeated start condition
transferNoStop transferFlag = 0x4 // don't send a stop condition
)
// LPI2C FIFO commands
const (
commandTxData commandFlag = (0x0 << nxp.LPI2C_MTDR_CMD_Pos) & nxp.LPI2C_MTDR_CMD_Msk // transmit
commandRxData commandFlag = (0x1 << nxp.LPI2C_MTDR_CMD_Pos) & nxp.LPI2C_MTDR_CMD_Msk // receive
commandStop commandFlag = (0x2 << nxp.LPI2C_MTDR_CMD_Pos) & nxp.LPI2C_MTDR_CMD_Msk // generate STOP condition
commandStart commandFlag = (0x4 << nxp.LPI2C_MTDR_CMD_Pos) & nxp.LPI2C_MTDR_CMD_Msk // generate (REPEATED)START and transmit
)
// LPI2C transactional states
const (
stateIdle stateFlag = 0x0
stateSendCommand stateFlag = 0x1
stateIssueReadCommand stateFlag = 0x2
stateTransferData stateFlag = 0x3
stateStop stateFlag = 0x4
stateWaitForCompletion stateFlag = 0x5
)
func (i2c *I2C) setPins(c I2CConfig) (sda, scl Pin) {
// if both given pins are defined, or either receiver pin is undefined.
if 0 != c.SDA && 0 != c.SCL || 0 == i2c.sda || 0 == i2c.scl {
// override the receiver's pins.
i2c.sda, i2c.scl = c.SDA, c.SCL
}
// return the selected pins.
return i2c.sda, i2c.scl
}
// Configure is intended to setup an I2C interface for transmit/receive.
func (i2c *I2C) Configure(config I2CConfig) error {
// init pins
sda, scl := i2c.setPins(config)
// configure the mux and pad control registers
sda.Configure(PinConfig{Mode: PinModeI2CSDA})
scl.Configure(PinConfig{Mode: PinModeI2CSCL})
// configure the mux input selector
i2c.muxSDA.connect()
i2c.muxSCL.connect()
freq := config.Frequency
if 0 == freq {
freq = 100 * KHz
}
// reset clock and registers, and enable LPI2C module interface
i2c.reset(freq)
return nil
}
// SetBaudRate sets the communication speed for I2C.
func (i2c I2C) SetBaudRate(br uint32) error {
// TODO: implement
return errI2CNotImplemented
}
func (i2c I2C) Tx(addr uint16, w, r []byte) error {
// perform transmit transfer
if nil != w {
// generate start condition on bus
if result := i2c.start(addr, directionWrite); resultSuccess != result {
return errI2CSignalStartTimeout
}
// ensure TX FIFO is empty
if result := i2c.waitForTxEmpty(); resultSuccess != result {
return errI2CBusReadyTimeout
}
// check if communication was successful
if status := statusFlag(i2c.Bus.MSR.Get()); 0 != (status & statusNackDetect) {
return errI2CAckExpected
}
// send transmit data
if result := i2c.controllerTransmit(w); resultSuccess != result {
return errI2CWriteTimeout
}
}
// perform receive transfer
if nil != r {
// generate (repeated-)start condition on bus
if result := i2c.start(addr, directionRead); resultSuccess != result {
return errI2CSignalStartTimeout
}
// read received data
if result := i2c.controllerReceive(r); resultSuccess != result {
return errI2CReadTimeout
}
}
// generate stop condition on bus
if result := i2c.stop(); resultSuccess != result {
return errI2CSignalStopTimeout
}
return nil
}
// WriteRegisterEx transmits first the register and then the data to the
// peripheral device.
//
// Many I2C-compatible devices are organized in terms of registers. This method
// is a shortcut to easily write to such registers. Also, it only works for
// devices with 7-bit addresses, which is the vast majority.
func (i2c I2C) WriteRegisterEx(address uint8, register uint8, data []byte) error {
option := transferOption{
flags: transferDefault, // transfer options bit mask (0 = normal transfer)
peripheral: uint16(address), // 7-bit peripheral address
direction: directionWrite, // directionRead or directionWrite
subaddress: uint16(register), // peripheral sub-address (transferred MSB first)
subaddressSize: 1, // byte length of sub-address (maximum = 4 bytes)
}
if result := i2c.controllerTransferPoll(option, data); resultSuccess != result {
return errI2CWriteTimeout
}
return nil
}
// ReadRegisterEx transmits the register, restarts the connection as a read
// operation, and reads the response.
//
// Many I2C-compatible devices are organized in terms of registers. This method
// is a shortcut to easily read such registers. Also, it only works for devices
// with 7-bit addresses, which is the vast majority.
func (i2c I2C) ReadRegisterEx(address uint8, register uint8, data []byte) error {
option := transferOption{
flags: transferDefault, // transfer options bit mask (0 = normal transfer)
peripheral: uint16(address), // 7-bit peripheral address
direction: directionRead, // directionRead or directionWrite
subaddress: uint16(register), // peripheral sub-address (transferred MSB first)
subaddressSize: 1, // byte length of sub-address (maximum = 4 bytes)
}
if result := i2c.controllerTransferPoll(option, data); resultSuccess != result {
return errI2CWriteTimeout
}
return nil
}
func (i2c *I2C) reset(freq uint32) {
// disable interface
i2c.Bus.MCR.ClearBits(nxp.LPI2C_MCR_MEN)
// software reset all interface registers
i2c.Bus.MCR.Set(nxp.LPI2C_MCR_RST)
// RST remains set until manually cleared!
i2c.Bus.MCR.ClearBits(nxp.LPI2C_MCR_RST)
// disable host request
i2c.Bus.MCFGR0.Set(0)
// enable ACK, use I2C 2-pin open drain mode
i2c.Bus.MCFGR1.Set(0)
// set FIFO watermarks (RX=1, TX=1)
mfcr := (uint32(0x1) << nxp.LPI2C_MFCR_RXWATER_Pos) & nxp.LPI2C_MFCR_RXWATER_Msk
mfcr |= (uint32(0x1) << nxp.LPI2C_MFCR_TXWATER_Pos) & nxp.LPI2C_MFCR_TXWATER_Msk
i2c.Bus.MFCR.Set(mfcr)
// configure clock using receiver frequency
i2c.setFrequency(freq)
// clear reset, and enable the interface
i2c.Bus.MCR.Set(nxp.LPI2C_MCR_MEN)
// wait for the I2C bus to idle
for i2c.Bus.MSR.Get()&nxp.LPI2C_MSR_BBF != 0 {
}
}
func (i2c *I2C) setFrequency(freq uint32) {
var (
bestPre uint32 = 0
bestClkHi uint32 = 0
bestError uint32 = 0xFFFFFFFF
)
// disable interface
wasEnabled := i2c.Bus.MCR.HasBits(nxp.LPI2C_MCR_MEN)
i2c.Bus.MCR.ClearBits(nxp.LPI2C_MCR_MEN)
// baud rate = (24MHz/(2^pre))/(CLKLO+1 + CLKHI+1 + FLOOR((2+FILTSCL)/(2^pre)))
// assume: CLKLO=2*CLKHI, SETHOLD=CLKHI, DATAVD=CLKHI/2
for pre := uint32(1); pre <= 128; pre *= 2 {
if bestError == 0 {
break
}
for clkHi := uint32(1); clkHi < 32; clkHi++ {
var absError, rate uint32
if clkHi == 1 {
rate = (24 * MHz / pre) / (1 + 3 + 2 + 2/pre)
} else {
rate = (24 * MHz / pre) / (3*clkHi + 2 + 2/pre)
}
if freq > rate {
absError = freq - rate
} else {
absError = rate - freq
}
if absError < bestError {
bestPre = pre
bestClkHi = clkHi
bestError = absError
// if the error is 0, then we can stop searching because we won't find a
// better match
if absError == 0 {
break
}
}
}
}
var (
clklo = func(n uint32) uint32 { return (n << nxp.LPI2C_MCCR0_CLKLO_Pos) & nxp.LPI2C_MCCR0_CLKLO_Msk }
clkhi = func(n uint32) uint32 { return (n << nxp.LPI2C_MCCR0_CLKHI_Pos) & nxp.LPI2C_MCCR0_CLKHI_Msk }
datavd = func(n uint32) uint32 { return (n << nxp.LPI2C_MCCR0_DATAVD_Pos) & nxp.LPI2C_MCCR0_DATAVD_Msk }
sethold = func(n uint32) uint32 { return (n << nxp.LPI2C_MCCR0_SETHOLD_Pos) & nxp.LPI2C_MCCR0_SETHOLD_Msk }
)
// StandardMode, FastMode, FastModePlus, and UltraFastMode
mccr0 := clkhi(bestClkHi)
if bestClkHi < 2 {
mccr0 |= (clklo(3) | sethold(2) | datavd(1))
} else {
mccr0 |= clklo(2*bestClkHi) | sethold(bestClkHi) | datavd(bestClkHi/2)
}
i2c.Bus.MCCR0.Set(mccr0)
i2c.Bus.MCCR1.Set(i2c.Bus.MCCR0.Get())
for i := uint32(0); i < 8; i++ {
if bestPre == (1 << i) {
bestPre = i
break
}
}
preMask := (bestPre << nxp.LPI2C_MCFGR1_PRESCALE_Pos) & nxp.LPI2C_MCFGR1_PRESCALE_Msk
i2c.Bus.MCFGR1.Set((i2c.Bus.MCFGR1.Get() & ^uint32(nxp.LPI2C_MCFGR1_PRESCALE_Msk)) | preMask)
var (
filtsda = func(n uint32) uint32 { return (n << nxp.LPI2C_MCFGR2_FILTSDA_Pos) & nxp.LPI2C_MCFGR2_FILTSDA_Msk }
filtscl = func(n uint32) uint32 { return (n << nxp.LPI2C_MCFGR2_FILTSCL_Pos) & nxp.LPI2C_MCFGR2_FILTSCL_Msk }
busidle = func(n uint32) uint32 { return (n << nxp.LPI2C_MCFGR2_BUSIDLE_Pos) & nxp.LPI2C_MCFGR2_BUSIDLE_Msk }
pinlow = func(n uint32) uint32 { return (n << nxp.LPI2C_MCFGR3_PINLOW_Pos) & nxp.LPI2C_MCFGR3_PINLOW_Msk }
mcfgr2, mcfgr3 uint32
)
const i2cClockStretchTimeout = 15000 // microseconds
if freq >= 5*MHz {
// I2C UltraFastMode 5 MHz
mcfgr2 = 0 // disable glitch filters and timeout for UltraFastMode
mcfgr3 = 0 //
} else if freq >= 1*MHz {
// I2C FastModePlus 1 MHz
mcfgr2 = filtsda(1) | filtscl(1) | busidle(2400) // 100us timeout
mcfgr3 = pinlow(i2cClockStretchTimeout*24/256 + 1)
} else if freq >= 400*KHz {
// I2C FastMode 400 kHz
mcfgr2 = filtsda(2) | filtscl(2) | busidle(3600) // 150us timeout
mcfgr3 = pinlow(i2cClockStretchTimeout*24/256 + 1)
} else {
// I2C StandardMode 100 kHz
mcfgr2 = filtsda(5) | filtscl(5) | busidle(3000) // 250us timeout
mcfgr3 = pinlow(i2cClockStretchTimeout*12/256 + 1)
}
i2c.Bus.MCFGR2.Set(mcfgr2)
i2c.Bus.MCFGR3.Set(mcfgr3)
// restore controller mode if it was enabled when called
if wasEnabled {
i2c.Bus.MCR.SetBits(nxp.LPI2C_MCR_MEN)
}
}
// checkStatus converts the status register to a resultFlag for return, and
// clears any errors if present.
func (i2c *I2C) checkStatus(status statusFlag) resultFlag {
result := resultSuccess
// check for error. these errors cause a stop to be sent automatically.
// we must clear the errors before a new transfer can start.
if status &= statusError; 0 != status {
// select the correct error code ordered by severity, bus issues first.
if 0 != (status & statusPinLowTimeout) {
result = resultPinLowTimeout
} else if 0 != (status & statusArbitrationLost) {
result = resultArbitrationLost
} else if 0 != (status & statusNackDetect) {
result = resultNak
} else if 0 != (status & statusFifoErr) {
result = resultFifoError
}
// clear the flags
i2c.Bus.MSR.Set(uint32(status))
// reset fifos. these flags clear automatically.
i2c.Bus.MCR.SetBits(nxp.LPI2C_MCR_RRF | nxp.LPI2C_MCR_RTF)
}
return result
}
func (i2c *I2C) getFIFOSize() (rx, tx uint32) { return 4, 4 }
func (i2c *I2C) getFIFOCount() (rx, tx uint32) {
mfsr := i2c.Bus.MFSR.Get()
return (mfsr & nxp.LPI2C_MFSR_RXCOUNT_Msk) >> nxp.LPI2C_MFSR_RXCOUNT_Pos,
(mfsr & nxp.LPI2C_MFSR_TXCOUNT_Msk) >> nxp.LPI2C_MFSR_TXCOUNT_Pos
}
func (i2c *I2C) waitForTxReady() resultFlag {
result := resultSuccess
_, txSize := i2c.getFIFOSize()
for {
_, txCount := i2c.getFIFOCount()
status := statusFlag(i2c.Bus.MSR.Get())
if result = i2c.checkStatus(status); resultSuccess != result {
break
}
if txSize-txCount > 0 {
break
}
}
return result
}
func (i2c *I2C) waitForTxEmpty() resultFlag {
result := resultSuccess
for {
_, txCount := i2c.getFIFOCount()
status := statusFlag(i2c.Bus.MSR.Get())
if result = i2c.checkStatus(status); resultSuccess != result {
break
}
if 0 == txCount {
break
}
}
return result
}
// isBusBusy checks if the I2C bus is busy, returning true if it is busy and we
// are not the ones driving it, otherwise false.
func (i2c *I2C) isBusBusy() bool {
status := statusFlag(i2c.Bus.MSR.Get())
return (0 != (status & statusBusBusy)) && (0 == (status & statusBusy))
}
// start sends a START signal and peripheral address on the I2C bus.
//
// This function is used to initiate a new controller mode transfer. First, the
// bus state is checked to ensure that another controller is not occupying the
// bus. Then a START signal is transmitted, followed by the 7-bit peripheral
// address. Note that this function does not actually wait until the START and
// address are successfully sent on the bus before returning.
func (i2c *I2C) start(address uint16, dir i2cDirection) resultFlag {
// return an error if the bus is already in use by another controller
if i2c.isBusBusy() {
return resultBusy
}
// clear all flags
i2c.Bus.MSR.Set(uint32(statusClear))
// turn off auto-stop
i2c.Bus.MCFGR1.ClearBits(nxp.LPI2C_MCFGR1_AUTOSTOP)
// wait until there is room in the FIFO
if result := i2c.waitForTxReady(); resultSuccess != result {
return result
}
// issue start command
i2c.Bus.MTDR.Set(uint32(commandStart) | dir.shift(address))
return resultSuccess
}
// stop sends a STOP signal on the I2C bus.
//
// This function does not return until the STOP signal is seen on the bus, or
// an error occurs.
func (i2c *I2C) stop() resultFlag {
const tryMax = 0 // keep waiting forever
// wait until there is room in the FIFO
result := i2c.waitForTxReady()
if resultSuccess != result {
return result
}
// send the STOP signal
i2c.Bus.MTDR.Set(uint32(commandStop))
// wait for the stop detected flag to set, indicating the transfer has
// completed on the bus. also check for errors while waiting.
try := 0
for resultSuccess == result && (0 == tryMax || try < tryMax) {
status := statusFlag(i2c.Bus.MSR.Get())
result = i2c.checkStatus(status)
if (0 != (status & statusStopDetect)) && (0 != (status & statusTxReady)) {
i2c.Bus.MSR.Set(uint32(statusStopDetect))
break
}
try++
}
if 0 != tryMax && try >= tryMax {
return resultTimeout
}
return result
}
// controllerReceive performs a polling receive transfer on the I2C bus.
func (i2c *I2C) controllerReceive(rxBuffer []byte) resultFlag {
const tryMax = 0 // keep trying forever
rxSize := len(rxBuffer)
if rxSize == 0 {
return resultSuccess
}
// wait until there is room in the FIFO
result := i2c.waitForTxReady()
if resultSuccess != result {
return result
}
sizeMask := (uint32(rxSize-1) << nxp.LPI2C_MTDR_DATA_Pos) & nxp.LPI2C_MTDR_DATA_Msk
i2c.Bus.MTDR.Set(uint32(commandRxData) | sizeMask)
// receive data
for rxSize > 0 {
// read LPI2C receive FIFO register. the register includes a flag to
// indicate whether the FIFO is empty, so we can both get the data and check
// if we need to keep reading using a single register read.
var data uint32
try := 0
for 0 == tryMax || try < tryMax {
// check for errors on the bus
status := statusFlag(i2c.Bus.MSR.Get())
result = i2c.checkStatus(status)
if resultSuccess != result {
return result
}
// read received data, break if FIFO was non-empty
data = i2c.Bus.MRDR.Get()
if 0 == (data & nxp.LPI2C_MRDR_RXEMPTY_Msk) {
break
}
try++
}
// ensure we didn't timeout waiting for data
if 0 != tryMax && try >= tryMax {
return resultTimeout
}
// copy data to RX buffer
rxBuffer[len(rxBuffer)-rxSize] = byte(data & nxp.LPI2C_MRDR_DATA_Msk)
rxSize--
}
return result
}
// controllerTransmit performs a polling transmit transfer on the I2C bus.
func (i2c *I2C) controllerTransmit(txBuffer []byte) resultFlag {
txSize := len(txBuffer)
for txSize > 0 {
// wait until there is room in the FIFO
result := i2c.waitForTxReady()
if resultSuccess != result {
return result
}
// write byte into LPI2C data register
i2c.Bus.MTDR.Set(uint32(txBuffer[len(txBuffer)-txSize] & nxp.LPI2C_MTDR_DATA_Msk))
txSize--
}
return resultSuccess
}
type transferOption struct {
flags transferFlag // transfer options bit mask (0 = normal transfer)
peripheral uint16 // 7-bit peripheral address
direction i2cDirection // directionRead or directionWrite
subaddress uint16 // peripheral sub-address (transferred MSB first)
subaddressSize uint16 // byte length of sub-address (maximum = 4 bytes)
}
func (i2c *I2C) controllerTransferPoll(option transferOption, data []byte) resultFlag {
// return an error if the bus is already in use by another controller
if i2c.isBusBusy() {
return resultBusy
}
// clear all flags
i2c.Bus.MSR.Set(uint32(statusClear))
// turn off auto-stop
i2c.Bus.MCFGR1.ClearBits(nxp.LPI2C_MCFGR1_AUTOSTOP)
cmd := make([]uint16, 0, 7)
size := len(data)
direction := option.direction
if option.subaddressSize > 0 {
direction = directionWrite
}
// peripheral address
if 0 == (option.flags & transferNoStart) {
addr := direction.shift(option.peripheral)
cmd = append(cmd, uint16(uint32(commandStart)|addr))
}
// sub-address (MSB-first)
rem := option.subaddressSize
for rem > 0 {
rem--
cmd = append(cmd, (option.subaddress>>(8*rem))&0xFF)
}
// need to send repeated start if switching directions to read
if (0 != size) && (directionRead == option.direction) {
if directionWrite == direction {
addr := directionRead.shift(option.peripheral)
cmd = append(cmd, uint16(uint32(commandStart)|addr))
}
}
// send command buffer
result := resultSuccess
for _, c := range cmd {
// wait until there is room in the FIFO
if result = i2c.waitForTxReady(); resultSuccess != result {
return result
}
// write byte into LPI2C controller data register
i2c.Bus.MTDR.Set(uint32(c))
}
// send data
if option.direction == directionWrite && size > 0 {
result = i2c.controllerTransmit(data)
}
// receive data
if option.direction == directionRead && size > 0 {
result = i2c.controllerReceive(data)
}
if resultSuccess != result {
return result
}
if 0 == (option.flags & transferNoStop) {
result = i2c.stop()
}
return result
}
|