1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
//go:build nrf
package machine
import (
"bytes"
"device/nrf"
"encoding/binary"
"runtime/interrupt"
"unsafe"
)
const deviceName = nrf.Device
var deviceID [8]byte
// DeviceID returns an identifier that is unique within
// a particular chipset.
//
// The identity is one burnt into the MCU itself, or the
// flash chip at time of manufacture.
//
// It's possible that two different vendors may allocate
// the same DeviceID, so callers should take this into
// account if needing to generate a globally unique id.
//
// The length of the hardware ID is vendor-specific, but
// 8 bytes (64 bits) is common.
func DeviceID() []byte {
words := make([]uint32, 2)
words[0] = nrf.FICR.DEVICEID[0].Get()
words[1] = nrf.FICR.DEVICEID[1].Get()
for i := 0; i < 8; i++ {
shift := (i % 4) * 8
w := i / 4
deviceID[i] = byte(words[w] >> shift)
}
return deviceID[:]
}
const (
PinInput PinMode = (nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos)
PinInputPullup PinMode = PinInput | (nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos)
PinInputPulldown PinMode = PinInput | (nrf.GPIO_PIN_CNF_PULL_Pulldown << nrf.GPIO_PIN_CNF_PULL_Pos)
PinOutput PinMode = (nrf.GPIO_PIN_CNF_DIR_Output << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos)
)
type PinChange uint8
// Pin change interrupt constants for SetInterrupt.
const (
PinRising PinChange = nrf.GPIOTE_CONFIG_POLARITY_LoToHi
PinFalling PinChange = nrf.GPIOTE_CONFIG_POLARITY_HiToLo
PinToggle PinChange = nrf.GPIOTE_CONFIG_POLARITY_Toggle
)
// Callbacks to be called for pins configured with SetInterrupt.
var pinCallbacks [len(nrf.GPIOTE.CONFIG)]func(Pin)
// Configure this pin with the given configuration.
func (p Pin) Configure(config PinConfig) {
cfg := config.Mode | nrf.GPIO_PIN_CNF_DRIVE_S0S1 | nrf.GPIO_PIN_CNF_SENSE_Disabled
port, pin := p.getPortPin()
port.PIN_CNF[pin].Set(uint32(cfg))
}
// Set the pin to high or low.
// Warning: only use this on an output pin!
func (p Pin) Set(high bool) {
port, pin := p.getPortPin()
if high {
port.OUTSET.Set(1 << pin)
} else {
port.OUTCLR.Set(1 << pin)
}
}
// Return the register and mask to enable a given GPIO pin. This can be used to
// implement bit-banged drivers.
func (p Pin) PortMaskSet() (*uint32, uint32) {
port, pin := p.getPortPin()
return &port.OUTSET.Reg, 1 << pin
}
// Return the register and mask to disable a given port. This can be used to
// implement bit-banged drivers.
func (p Pin) PortMaskClear() (*uint32, uint32) {
port, pin := p.getPortPin()
return &port.OUTCLR.Reg, 1 << pin
}
// Get returns the current value of a GPIO pin when the pin is configured as an
// input or as an output.
func (p Pin) Get() bool {
port, pin := p.getPortPin()
return (port.IN.Get()>>pin)&1 != 0
}
// SetInterrupt sets an interrupt to be executed when a particular pin changes
// state. The pin should already be configured as an input, including a pull up
// or down if no external pull is provided.
//
// This call will replace a previously set callback on this pin. You can pass a
// nil func to unset the pin change interrupt. If you do so, the change
// parameter is ignored and can be set to any value (such as 0).
func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error {
// Some variables to easily check whether a channel was already configured
// as an event channel for the given pin.
// This is not just an optimization, this is requred: the datasheet says
// that configuring more than one channel for a given pin results in
// unpredictable behavior.
expectedConfigMask := uint32(nrf.GPIOTE_CONFIG_MODE_Msk | nrf.GPIOTE_CONFIG_PSEL_Msk)
expectedConfig := nrf.GPIOTE_CONFIG_MODE_Event<<nrf.GPIOTE_CONFIG_MODE_Pos | uint32(p)<<nrf.GPIOTE_CONFIG_PSEL_Pos
foundChannel := false
for i := range nrf.GPIOTE.CONFIG {
config := nrf.GPIOTE.CONFIG[i].Get()
if config == 0 || config&expectedConfigMask == expectedConfig {
// Found an empty GPIOTE channel or one that was already configured
// for this pin.
if callback == nil {
// Disable this channel.
nrf.GPIOTE.INTENCLR.Set(uint32(1 << uint(i)))
pinCallbacks[i] = nil
return nil
}
// Enable this channel with the given callback.
nrf.GPIOTE.INTENCLR.Set(uint32(1 << uint(i)))
nrf.GPIOTE.CONFIG[i].Set(nrf.GPIOTE_CONFIG_MODE_Event<<nrf.GPIOTE_CONFIG_MODE_Pos |
uint32(p)<<nrf.GPIOTE_CONFIG_PSEL_Pos |
uint32(change)<<nrf.GPIOTE_CONFIG_POLARITY_Pos)
pinCallbacks[i] = callback
nrf.GPIOTE.INTENSET.Set(uint32(1 << uint(i)))
foundChannel = true
break
}
}
if !foundChannel {
return ErrNoPinChangeChannel
}
// Set and enable the GPIOTE interrupt. It's not a problem if this happens
// more than once.
interrupt.New(nrf.IRQ_GPIOTE, func(interrupt.Interrupt) {
for i := range nrf.GPIOTE.EVENTS_IN {
if nrf.GPIOTE.EVENTS_IN[i].Get() != 0 {
nrf.GPIOTE.EVENTS_IN[i].Set(0)
pin := Pin((nrf.GPIOTE.CONFIG[i].Get() & nrf.GPIOTE_CONFIG_PSEL_Msk) >> nrf.GPIOTE_CONFIG_PSEL_Pos)
pinCallbacks[i](pin)
}
}
}).Enable()
// Everything was configured correctly.
return nil
}
// UART on the NRF.
type UART struct {
Buffer *RingBuffer
}
// UART
var (
// UART0 is the hardware UART on the NRF SoC.
_UART0 = UART{Buffer: NewRingBuffer()}
UART0 = &_UART0
)
// Configure the UART.
func (uart *UART) Configure(config UARTConfig) {
// Default baud rate to 115200.
if config.BaudRate == 0 {
config.BaudRate = 115200
}
uart.SetBaudRate(config.BaudRate)
// Set TX and RX pins
if config.TX == 0 && config.RX == 0 {
// Use default pins
uart.setPins(UART_TX_PIN, UART_RX_PIN)
} else {
uart.setPins(config.TX, config.RX)
}
nrf.UART0.ENABLE.Set(nrf.UART_ENABLE_ENABLE_Enabled)
nrf.UART0.TASKS_STARTTX.Set(1)
nrf.UART0.TASKS_STARTRX.Set(1)
nrf.UART0.INTENSET.Set(nrf.UART_INTENSET_RXDRDY_Msk)
// Enable RX IRQ.
intr := interrupt.New(nrf.IRQ_UART0, _UART0.handleInterrupt)
intr.SetPriority(0xc0) // low priority
intr.Enable()
}
// SetBaudRate sets the communication speed for the UART.
func (uart *UART) SetBaudRate(br uint32) {
// Magic: calculate 'baudrate' register from the input number.
// Every value listed in the datasheet will be converted to the
// correct register value, except for 192600. I suspect the value
// listed in the nrf52 datasheet (0x0EBED000) is incorrectly rounded
// and should be 0x0EBEE000, as the nrf51 datasheet lists the
// nonrounded value 0x0EBEDFA4.
// Some background:
// https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values/2046#2046
rate := uint32((uint64(br/400)*uint64(400*0xffffffff/16000000) + 0x800) & 0xffffff000)
nrf.UART0.BAUDRATE.Set(rate)
}
// WriteByte writes a byte of data to the UART.
func (uart *UART) writeByte(c byte) error {
nrf.UART0.EVENTS_TXDRDY.Set(0)
nrf.UART0.TXD.Set(uint32(c))
for nrf.UART0.EVENTS_TXDRDY.Get() == 0 {
}
return nil
}
func (uart *UART) flush() {}
func (uart *UART) handleInterrupt(interrupt.Interrupt) {
if nrf.UART0.EVENTS_RXDRDY.Get() != 0 {
uart.Receive(byte(nrf.UART0.RXD.Get()))
nrf.UART0.EVENTS_RXDRDY.Set(0x0)
}
}
const i2cTimeout = 0xffff // this is around 29ms on a nrf52
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
Mode I2CMode
}
// Configure is intended to setup the I2C interface.
func (i2c *I2C) Configure(config I2CConfig) error {
i2c.disable()
// Default I2C bus speed is 100 kHz.
if config.Frequency == 0 {
config.Frequency = 100 * KHz
}
// Default I2C pins if not set.
if config.SDA == 0 && config.SCL == 0 {
config.SDA = SDA_PIN
config.SCL = SCL_PIN
}
// do config
sclPort, sclPin := config.SCL.getPortPin()
sclPort.PIN_CNF[sclPin].Set((nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) |
(nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos) |
(nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos) |
(nrf.GPIO_PIN_CNF_DRIVE_S0D1 << nrf.GPIO_PIN_CNF_DRIVE_Pos) |
(nrf.GPIO_PIN_CNF_SENSE_Disabled << nrf.GPIO_PIN_CNF_SENSE_Pos))
sdaPort, sdaPin := config.SDA.getPortPin()
sdaPort.PIN_CNF[sdaPin].Set((nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) |
(nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos) |
(nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos) |
(nrf.GPIO_PIN_CNF_DRIVE_S0D1 << nrf.GPIO_PIN_CNF_DRIVE_Pos) |
(nrf.GPIO_PIN_CNF_SENSE_Disabled << nrf.GPIO_PIN_CNF_SENSE_Pos))
i2c.setPins(config.SCL, config.SDA)
i2c.mode = config.Mode
if i2c.mode == I2CModeController {
i2c.SetBaudRate(config.Frequency)
i2c.enableAsController()
} else {
i2c.enableAsTarget()
}
return nil
}
// SetBaudRate sets the I2C frequency. It has the side effect of also
// enabling the I2C hardware if disabled beforehand.
//
//go:inline
func (i2c *I2C) SetBaudRate(br uint32) error {
switch {
case br >= 400*KHz:
i2c.Bus.SetFREQUENCY(nrf.TWI_FREQUENCY_FREQUENCY_K400)
case br >= 250*KHz:
i2c.Bus.SetFREQUENCY(nrf.TWI_FREQUENCY_FREQUENCY_K250)
default:
i2c.Bus.SetFREQUENCY(nrf.TWI_FREQUENCY_FREQUENCY_K100)
}
return nil
}
// signalStop sends a stop signal to the I2C peripheral and waits for confirmation.
func (i2c *I2C) signalStop() error {
tries := 0
i2c.Bus.TASKS_STOP.Set(1)
for i2c.Bus.EVENTS_STOPPED.Get() == 0 {
tries++
if tries >= i2cTimeout {
return errI2CSignalStopTimeout
}
}
i2c.Bus.EVENTS_STOPPED.Set(0)
return nil
}
var rngStarted = false
// GetRNG returns 32 bits of non-deterministic random data based on internal thermal noise.
// According to Nordic's documentation, the random output is suitable for cryptographic purposes.
func GetRNG() (ret uint32, err error) {
// There's no apparent way to check the status of the RNG peripheral's task, so simply start it
// to avoid deadlocking while waiting for output.
if !rngStarted {
nrf.RNG.TASKS_START.Set(1)
nrf.RNG.SetCONFIG_DERCEN(nrf.RNG_CONFIG_DERCEN_Enabled)
rngStarted = true
}
// The RNG returns one byte at a time, so stack up four bytes into a single uint32 for return.
for i := 0; i < 4; i++ {
// Wait for data to be ready.
for nrf.RNG.EVENTS_VALRDY.Get() == 0 {
}
// Append random byte to output.
ret = (ret << 8) ^ nrf.RNG.GetVALUE()
// Unset the EVENTS_VALRDY register to avoid reading the same random output twice.
nrf.RNG.EVENTS_VALRDY.Set(0)
}
return ret, nil
}
// ReadTemperature reads the silicon die temperature of the chip. The return
// value is in milli-celsius.
func ReadTemperature() int32 {
nrf.TEMP.TASKS_START.Set(1)
for nrf.TEMP.EVENTS_DATARDY.Get() == 0 {
}
temp := int32(nrf.TEMP.TEMP.Get()) * 250 // the returned value is in units of 0.25°C
nrf.TEMP.EVENTS_DATARDY.Set(0)
return temp
}
const memoryStart = 0x0
// compile-time check for ensuring we fulfill BlockDevice interface
var _ BlockDevice = flashBlockDevice{}
var Flash flashBlockDevice
type flashBlockDevice struct {
}
// ReadAt reads the given number of bytes from the block device.
func (f flashBlockDevice) ReadAt(p []byte, off int64) (n int, err error) {
if FlashDataStart()+uintptr(off)+uintptr(len(p)) > FlashDataEnd() {
return 0, errFlashCannotReadPastEOF
}
data := unsafe.Slice((*byte)(unsafe.Pointer(FlashDataStart()+uintptr(off))), len(p))
copy(p, data)
return len(p), nil
}
// WriteAt writes the given number of bytes to the block device.
// Only double-word (64 bits) length data can be programmed. See rm0461 page 78.
// If the length of p is not long enough it will be padded with 0xFF bytes.
// This method assumes that the destination is already erased.
func (f flashBlockDevice) WriteAt(p []byte, off int64) (n int, err error) {
if FlashDataStart()+uintptr(off)+uintptr(len(p)) > FlashDataEnd() {
return 0, errFlashCannotWritePastEOF
}
address := FlashDataStart() + uintptr(off)
padded := f.pad(p)
waitWhileFlashBusy()
nrf.NVMC.SetCONFIG_WEN(nrf.NVMC_CONFIG_WEN_Wen)
defer nrf.NVMC.SetCONFIG_WEN(nrf.NVMC_CONFIG_WEN_Ren)
for j := 0; j < len(padded); j += int(f.WriteBlockSize()) {
// write word
*(*uint32)(unsafe.Pointer(address)) = binary.LittleEndian.Uint32(padded[j : j+int(f.WriteBlockSize())])
address += uintptr(f.WriteBlockSize())
waitWhileFlashBusy()
}
return len(padded), nil
}
// Size returns the number of bytes in this block device.
func (f flashBlockDevice) Size() int64 {
return int64(FlashDataEnd() - FlashDataStart())
}
const writeBlockSize = 4
// WriteBlockSize returns the block size in which data can be written to
// memory. It can be used by a client to optimize writes, non-aligned writes
// should always work correctly.
func (f flashBlockDevice) WriteBlockSize() int64 {
return writeBlockSize
}
// EraseBlockSize returns the smallest erasable area on this particular chip
// in bytes. This is used for the block size in EraseBlocks.
// It must be a power of two, and may be as small as 1. A typical size is 4096.
func (f flashBlockDevice) EraseBlockSize() int64 {
return eraseBlockSize()
}
// EraseBlocks erases the given number of blocks. An implementation may
// transparently coalesce ranges of blocks into larger bundles if the chip
// supports this. The start and len parameters are in block numbers, use
// EraseBlockSize to map addresses to blocks.
func (f flashBlockDevice) EraseBlocks(start, len int64) error {
address := FlashDataStart() + uintptr(start*f.EraseBlockSize())
waitWhileFlashBusy()
nrf.NVMC.SetCONFIG_WEN(nrf.NVMC_CONFIG_WEN_Een)
defer nrf.NVMC.SetCONFIG_WEN(nrf.NVMC_CONFIG_WEN_Ren)
for i := start; i < start+len; i++ {
nrf.NVMC.ERASEPAGE.Set(uint32(address))
waitWhileFlashBusy()
address += uintptr(f.EraseBlockSize())
}
return nil
}
// pad data if needed so it is long enough for correct byte alignment on writes.
func (f flashBlockDevice) pad(p []byte) []byte {
overflow := int64(len(p)) % f.WriteBlockSize()
if overflow == 0 {
return p
}
padding := bytes.Repeat([]byte{0xff}, int(f.WriteBlockSize()-overflow))
return append(p, padding...)
}
func waitWhileFlashBusy() {
for nrf.NVMC.GetREADY() != nrf.NVMC_READY_READY_Ready {
}
}
|