1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
// +build nrf
package machine
import (
"device/nrf"
"errors"
"runtime/interrupt"
)
var (
ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size")
)
type PinMode uint8
const (
PinInput PinMode = (nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos)
PinInputPullup PinMode = PinInput | (nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos)
PinInputPulldown PinMode = PinInput | (nrf.GPIO_PIN_CNF_PULL_Pulldown << nrf.GPIO_PIN_CNF_PULL_Pos)
PinOutput PinMode = (nrf.GPIO_PIN_CNF_DIR_Output << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Disconnect << nrf.GPIO_PIN_CNF_INPUT_Pos)
)
type PinChange uint8
// Pin change interrupt constants for SetInterrupt.
const (
PinRising PinChange = nrf.GPIOTE_CONFIG_POLARITY_LoToHi
PinFalling PinChange = nrf.GPIOTE_CONFIG_POLARITY_HiToLo
PinToggle PinChange = nrf.GPIOTE_CONFIG_POLARITY_Toggle
)
// Callbacks to be called for pins configured with SetInterrupt.
var pinCallbacks [len(nrf.GPIOTE.CONFIG)]func(Pin)
// Configure this pin with the given configuration.
func (p Pin) Configure(config PinConfig) {
cfg := config.Mode | nrf.GPIO_PIN_CNF_DRIVE_S0S1 | nrf.GPIO_PIN_CNF_SENSE_Disabled
port, pin := p.getPortPin()
port.PIN_CNF[pin].Set(uint32(cfg))
}
// Set the pin to high or low.
// Warning: only use this on an output pin!
func (p Pin) Set(high bool) {
port, pin := p.getPortPin()
if high {
port.OUTSET.Set(1 << pin)
} else {
port.OUTCLR.Set(1 << pin)
}
}
// Return the register and mask to enable a given GPIO pin. This can be used to
// implement bit-banged drivers.
func (p Pin) PortMaskSet() (*uint32, uint32) {
port, pin := p.getPortPin()
return &port.OUTSET.Reg, 1 << pin
}
// Return the register and mask to disable a given port. This can be used to
// implement bit-banged drivers.
func (p Pin) PortMaskClear() (*uint32, uint32) {
port, pin := p.getPortPin()
return &port.OUTCLR.Reg, 1 << pin
}
// Get returns the current value of a GPIO pin.
func (p Pin) Get() bool {
port, pin := p.getPortPin()
return (port.IN.Get()>>pin)&1 != 0
}
// SetInterrupt sets an interrupt to be executed when a particular pin changes
// state.
//
// This call will replace a previously set callback on this pin. You can pass a
// nil func to unset the pin change interrupt. If you do so, the change
// parameter is ignored and can be set to any value (such as 0).
func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error {
// Some variables to easily check whether a channel was already configured
// as an event channel for the given pin.
// This is not just an optimization, this is requred: the datasheet says
// that configuring more than one channel for a given pin results in
// unpredictable behavior.
expectedConfigMask := uint32(nrf.GPIOTE_CONFIG_MODE_Msk | nrf.GPIOTE_CONFIG_PSEL_Msk)
expectedConfig := nrf.GPIOTE_CONFIG_MODE_Event<<nrf.GPIOTE_CONFIG_MODE_Pos | uint32(p)<<nrf.GPIOTE_CONFIG_PSEL_Pos
foundChannel := false
for i := range nrf.GPIOTE.CONFIG {
config := nrf.GPIOTE.CONFIG[i].Get()
if config == 0 || config&expectedConfigMask == expectedConfig {
// Found an empty GPIOTE channel or one that was already configured
// for this pin.
if callback == nil {
// Disable this channel.
nrf.GPIOTE.INTENCLR.Set(uint32(1 << uint(i)))
pinCallbacks[i] = nil
return nil
}
// Enable this channel with the given callback.
nrf.GPIOTE.INTENCLR.Set(uint32(1 << uint(i)))
nrf.GPIOTE.CONFIG[i].Set(nrf.GPIOTE_CONFIG_MODE_Event<<nrf.GPIOTE_CONFIG_MODE_Pos |
uint32(p)<<nrf.GPIOTE_CONFIG_PSEL_Pos |
uint32(change)<<nrf.GPIOTE_CONFIG_POLARITY_Pos)
pinCallbacks[i] = callback
nrf.GPIOTE.INTENSET.Set(uint32(1 << uint(i)))
foundChannel = true
break
}
}
if !foundChannel {
return ErrNoPinChangeChannel
}
// Set and enable the GPIOTE interrupt. It's not a problem if this happens
// more than once.
interrupt.New(nrf.IRQ_GPIOTE, func(interrupt.Interrupt) {
for i := range nrf.GPIOTE.EVENTS_IN {
if nrf.GPIOTE.EVENTS_IN[i].Get() != 0 {
nrf.GPIOTE.EVENTS_IN[i].Set(0)
pin := Pin((nrf.GPIOTE.CONFIG[i].Get() & nrf.GPIOTE_CONFIG_PSEL_Msk) >> nrf.GPIOTE_CONFIG_PSEL_Pos)
pinCallbacks[i](pin)
}
}
}).Enable()
// Everything was configured correctly.
return nil
}
// UART on the NRF.
type UART struct {
Buffer *RingBuffer
}
// UART
var (
// NRF_UART0 is the hardware UART on the NRF SoC.
NRF_UART0 = UART{Buffer: NewRingBuffer()}
)
// Configure the UART.
func (uart UART) Configure(config UARTConfig) {
// Default baud rate to 115200.
if config.BaudRate == 0 {
config.BaudRate = 115200
}
uart.SetBaudRate(config.BaudRate)
// Set TX and RX pins
if config.TX == 0 && config.RX == 0 {
// Use default pins
uart.setPins(UART_TX_PIN, UART_RX_PIN)
} else {
uart.setPins(config.TX, config.RX)
}
nrf.UART0.ENABLE.Set(nrf.UART_ENABLE_ENABLE_Enabled)
nrf.UART0.TASKS_STARTTX.Set(1)
nrf.UART0.TASKS_STARTRX.Set(1)
nrf.UART0.INTENSET.Set(nrf.UART_INTENSET_RXDRDY_Msk)
// Enable RX IRQ.
intr := interrupt.New(nrf.IRQ_UART0, NRF_UART0.handleInterrupt)
intr.SetPriority(0xc0) // low priority
intr.Enable()
}
// SetBaudRate sets the communication speed for the UART.
func (uart UART) SetBaudRate(br uint32) {
// Magic: calculate 'baudrate' register from the input number.
// Every value listed in the datasheet will be converted to the
// correct register value, except for 192600. I suspect the value
// listed in the nrf52 datasheet (0x0EBED000) is incorrectly rounded
// and should be 0x0EBEE000, as the nrf51 datasheet lists the
// nonrounded value 0x0EBEDFA4.
// Some background:
// https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values/2046#2046
rate := uint32((uint64(br/400)*uint64(400*0xffffffff/16000000) + 0x800) & 0xffffff000)
nrf.UART0.BAUDRATE.Set(rate)
}
// WriteByte writes a byte of data to the UART.
func (uart UART) WriteByte(c byte) error {
nrf.UART0.EVENTS_TXDRDY.Set(0)
nrf.UART0.TXD.Set(uint32(c))
for nrf.UART0.EVENTS_TXDRDY.Get() == 0 {
}
return nil
}
func (uart *UART) handleInterrupt(interrupt.Interrupt) {
if nrf.UART0.EVENTS_RXDRDY.Get() != 0 {
uart.Receive(byte(nrf.UART0.RXD.Get()))
nrf.UART0.EVENTS_RXDRDY.Set(0x0)
}
}
// I2C on the NRF.
type I2C struct {
Bus *nrf.TWI_Type
}
// There are 2 I2C interfaces on the NRF.
var (
I2C0 = I2C{Bus: nrf.TWI0}
I2C1 = I2C{Bus: nrf.TWI1}
)
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
}
// Configure is intended to setup the I2C interface.
func (i2c I2C) Configure(config I2CConfig) {
// Default I2C bus speed is 100 kHz.
if config.Frequency == 0 {
config.Frequency = TWI_FREQ_100KHZ
}
// Default I2C pins if not set.
if config.SDA == 0 && config.SCL == 0 {
config.SDA = SDA_PIN
config.SCL = SCL_PIN
}
// do config
sclPort, sclPin := config.SCL.getPortPin()
sclPort.PIN_CNF[sclPin].Set((nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) |
(nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos) |
(nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos) |
(nrf.GPIO_PIN_CNF_DRIVE_S0D1 << nrf.GPIO_PIN_CNF_DRIVE_Pos) |
(nrf.GPIO_PIN_CNF_SENSE_Disabled << nrf.GPIO_PIN_CNF_SENSE_Pos))
sdaPort, sdaPin := config.SDA.getPortPin()
sdaPort.PIN_CNF[sdaPin].Set((nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) |
(nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos) |
(nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos) |
(nrf.GPIO_PIN_CNF_DRIVE_S0D1 << nrf.GPIO_PIN_CNF_DRIVE_Pos) |
(nrf.GPIO_PIN_CNF_SENSE_Disabled << nrf.GPIO_PIN_CNF_SENSE_Pos))
if config.Frequency == TWI_FREQ_400KHZ {
i2c.Bus.FREQUENCY.Set(nrf.TWI_FREQUENCY_FREQUENCY_K400)
} else {
i2c.Bus.FREQUENCY.Set(nrf.TWI_FREQUENCY_FREQUENCY_K100)
}
i2c.Bus.ENABLE.Set(nrf.TWI_ENABLE_ENABLE_Enabled)
i2c.setPins(config.SCL, config.SDA)
}
// Tx does a single I2C transaction at the specified address.
// It clocks out the given address, writes the bytes in w, reads back len(r)
// bytes and stores them in r, and generates a stop condition on the bus.
func (i2c I2C) Tx(addr uint16, w, r []byte) (err error) {
i2c.Bus.ADDRESS.Set(uint32(addr))
defer func() {
i2c.signalStop()
i2c.Bus.SHORTS.Set(nrf.TWI_SHORTS_BB_SUSPEND_Disabled)
}()
if len(w) != 0 {
i2c.Bus.TASKS_STARTTX.Set(1) // start transmission for writing
for _, b := range w {
if err = i2c.writeByte(b); err != nil {
goto cleanUp
}
}
}
if len(r) != 0 {
// To trigger suspend task when a byte is received
i2c.Bus.SHORTS.Set(nrf.TWI_SHORTS_BB_SUSPEND)
i2c.Bus.TASKS_STARTRX.Set(1) // re-start transmission for reading
for i := range r { // read each char
if i+1 == len(r) {
// To trigger stop task when last byte is received, set before resume task.
i2c.Bus.SHORTS.Set(nrf.TWI_SHORTS_BB_STOP)
}
i2c.Bus.TASKS_RESUME.Set(1) // re-start transmission for reading
if r[i], err = i2c.readByte(); err != nil {
// goto/break are practically equivalent here,
// but goto makes this more easily understandable for maintenance.
goto cleanUp
}
}
}
cleanUp:
i2c.signalStop()
i2c.Bus.SHORTS.Set(nrf.TWI_SHORTS_BB_SUSPEND_Disabled)
return
}
// signalStop sends a stop signal when writing or tells the I2C peripheral that
// it must generate a stop condition after the next character is retrieved when
// reading.
func (i2c I2C) signalStop() {
i2c.Bus.TASKS_STOP.Set(1)
for i2c.Bus.EVENTS_STOPPED.Get() == 0 {
}
i2c.Bus.EVENTS_STOPPED.Set(0)
}
// writeByte writes a single byte to the I2C bus.
func (i2c I2C) writeByte(data byte) error {
i2c.Bus.TXD.Set(uint32(data))
for i2c.Bus.EVENTS_TXDSENT.Get() == 0 {
if e := i2c.Bus.EVENTS_ERROR.Get(); e != 0 {
i2c.Bus.EVENTS_ERROR.Set(0)
return errI2CBusError
}
}
i2c.Bus.EVENTS_TXDSENT.Set(0)
return nil
}
// readByte reads a single byte from the I2C bus.
func (i2c I2C) readByte() (byte, error) {
for i2c.Bus.EVENTS_RXDREADY.Get() == 0 {
if e := i2c.Bus.EVENTS_ERROR.Get(); e != 0 {
i2c.Bus.EVENTS_ERROR.Set(0)
return 0, errI2CBusError
}
}
i2c.Bus.EVENTS_RXDREADY.Set(0)
return byte(i2c.Bus.RXD.Get()), nil
}
// SPI on the NRF.
type SPI struct {
Bus *nrf.SPI_Type
}
// There are 2 SPI interfaces on the NRF5x.
var (
SPI0 = SPI{Bus: nrf.SPI0}
SPI1 = SPI{Bus: nrf.SPI1}
)
// SPIConfig is used to store config info for SPI.
type SPIConfig struct {
Frequency uint32
SCK Pin
SDO Pin
SDI Pin
LSBFirst bool
Mode uint8
}
// Configure is intended to setup the SPI interface.
func (spi SPI) Configure(config SPIConfig) {
// Disable bus to configure it
spi.Bus.ENABLE.Set(nrf.SPI_ENABLE_ENABLE_Disabled)
// set frequency
var freq uint32
switch config.Frequency {
case 125000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_K125
case 250000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_K250
case 500000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_K500
case 1000000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_M1
case 2000000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_M2
case 4000000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_M4
case 8000000:
freq = nrf.SPI_FREQUENCY_FREQUENCY_M8
default:
freq = nrf.SPI_FREQUENCY_FREQUENCY_K500
}
spi.Bus.FREQUENCY.Set(freq)
var conf uint32
// set bit transfer order
if config.LSBFirst {
conf = (nrf.SPI_CONFIG_ORDER_LsbFirst << nrf.SPI_CONFIG_ORDER_Pos)
}
// set mode
switch config.Mode {
case 0:
conf &^= (nrf.SPI_CONFIG_CPOL_ActiveHigh << nrf.SPI_CONFIG_CPOL_Pos)
conf &^= (nrf.SPI_CONFIG_CPHA_Leading << nrf.SPI_CONFIG_CPHA_Pos)
case 1:
conf &^= (nrf.SPI_CONFIG_CPOL_ActiveHigh << nrf.SPI_CONFIG_CPOL_Pos)
conf |= (nrf.SPI_CONFIG_CPHA_Trailing << nrf.SPI_CONFIG_CPHA_Pos)
case 2:
conf |= (nrf.SPI_CONFIG_CPOL_ActiveLow << nrf.SPI_CONFIG_CPOL_Pos)
conf &^= (nrf.SPI_CONFIG_CPHA_Leading << nrf.SPI_CONFIG_CPHA_Pos)
case 3:
conf |= (nrf.SPI_CONFIG_CPOL_ActiveLow << nrf.SPI_CONFIG_CPOL_Pos)
conf |= (nrf.SPI_CONFIG_CPHA_Trailing << nrf.SPI_CONFIG_CPHA_Pos)
default: // to mode
conf &^= (nrf.SPI_CONFIG_CPOL_ActiveHigh << nrf.SPI_CONFIG_CPOL_Pos)
conf &^= (nrf.SPI_CONFIG_CPHA_Leading << nrf.SPI_CONFIG_CPHA_Pos)
}
spi.Bus.CONFIG.Set(conf)
// set pins
spi.setPins(config.SCK, config.SDO, config.SDI)
// Re-enable bus now that it is configured.
spi.Bus.ENABLE.Set(nrf.SPI_ENABLE_ENABLE_Enabled)
}
// Transfer writes/reads a single byte using the SPI interface.
func (spi SPI) Transfer(w byte) (byte, error) {
spi.Bus.TXD.Set(uint32(w))
for spi.Bus.EVENTS_READY.Get() == 0 {
}
r := spi.Bus.RXD.Get()
spi.Bus.EVENTS_READY.Set(0)
// TODO: handle SPI errors
return byte(r), nil
}
// Tx handles read/write operation for SPI interface. Since SPI is a syncronous write/read
// interface, there must always be the same number of bytes written as bytes read.
// The Tx method knows about this, and offers a few different ways of calling it.
//
// This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer.
// Note that the tx and rx buffers must be the same size:
//
// spi.Tx(tx, rx)
//
// This form sends the tx buffer, ignoring the result. Useful for sending "commands" that return zeros
// until all the bytes in the command packet have been received:
//
// spi.Tx(tx, nil)
//
// This form sends zeros, putting the result into the rx buffer. Good for reading a "result packet":
//
// spi.Tx(nil, rx)
//
func (spi SPI) Tx(w, r []byte) error {
var err error
switch {
case len(w) == 0:
// read only, so write zero and read a result.
for i := range r {
r[i], err = spi.Transfer(0)
if err != nil {
return err
}
}
case len(r) == 0:
// write only
spi.Bus.TXD.Set(uint32(w[0]))
w = w[1:]
for _, b := range w {
spi.Bus.TXD.Set(uint32(b))
for spi.Bus.EVENTS_READY.Get() == 0 {
}
spi.Bus.EVENTS_READY.Set(0)
_ = spi.Bus.RXD.Get()
}
for spi.Bus.EVENTS_READY.Get() == 0 {
}
spi.Bus.EVENTS_READY.Set(0)
_ = spi.Bus.RXD.Get()
default:
// write/read
if len(w) != len(r) {
return ErrTxInvalidSliceSize
}
for i, b := range w {
r[i], err = spi.Transfer(b)
if err != nil {
return err
}
}
}
return nil
}
|