1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
// Derivative work of Teensyduino Core Library
// http://www.pjrc.com/teensy/
// Copyright (c) 2017 PJRC.COM, LLC.
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// 1. The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// 2. If the Software is incorporated into a build system that allows
// selection among a list of target devices, then similar target
// devices manufactured by PJRC.COM must be included in the list of
// target devices and selectable in the same manner.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//go:build nxp && mk66f18
package machine
import (
"device/arm"
"device/nxp"
"errors"
"runtime/interrupt"
"runtime/volatile"
_ "unsafe" // for go:linkname
)
const (
uartC2Enable = nxp.UART_C2_TE | nxp.UART_C2_RE | nxp.UART_C2_RIE | nxp.UART_C2_ILIE
uartC2TXActive = uartC2Enable | nxp.UART_C2_TIE
uartC2TXCompleting = uartC2Enable | nxp.UART_C2_TCIE
uartC2TXInactive = uartC2Enable
uartIRQPriority = 64
// determined from UARTx_PFIFO
uartRXFIFODepth = 8
uartTXFIFODepth = 8
)
var (
ErrNotImplemented = errors.New("device has not been implemented")
ErrNotConfigured = errors.New("device has not been configured")
)
// PutcharUART writes a byte to the UART synchronously, without using interrupts
// or calling the scheduler
func PutcharUART(u *UART, c byte) {
// ensure the UART has been configured
if !u.SCGC.HasBits(u.SCGCMask) {
u.configure(UARTConfig{}, false)
}
for u.TCFIFO.Get() > 0 {
// busy wait
}
u.D.Set(c)
u.C2.Set(uartC2TXActive)
}
// PollUART manually checks a UART status and calls the ISR. This should only be
// called by runtime.abort.
func PollUART(u *UART) {
if u.SCGC.HasBits(u.SCGCMask) {
u.handleStatusInterrupt(u.Interrupt)
}
}
type UART struct {
*nxp.UART_Type
SCGC *volatile.Register32
SCGCMask uint32
DefaultRX Pin
DefaultTX Pin
// state
Buffer RingBuffer // RX Buffer
TXBuffer RingBuffer
Configured bool
Transmitting volatile.Register8
Interrupt interrupt.Interrupt
}
var (
UART0 = &_UART0
UART1 = &_UART1
UART2 = &_UART2
UART3 = &_UART3
UART4 = &_UART4
_UART0 = UART{UART_Type: nxp.UART0, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART0, DefaultRX: defaultUART0RX, DefaultTX: defaultUART0TX}
_UART1 = UART{UART_Type: nxp.UART1, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART1, DefaultRX: defaultUART1RX, DefaultTX: defaultUART1TX}
_UART2 = UART{UART_Type: nxp.UART2, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART2, DefaultRX: defaultUART2RX, DefaultTX: defaultUART2TX}
_UART3 = UART{UART_Type: nxp.UART3, SCGC: &nxp.SIM.SCGC4, SCGCMask: nxp.SIM_SCGC4_UART3, DefaultRX: defaultUART3RX, DefaultTX: defaultUART3TX}
_UART4 = UART{UART_Type: nxp.UART4, SCGC: &nxp.SIM.SCGC1, SCGCMask: nxp.SIM_SCGC1_UART4, DefaultRX: defaultUART4RX, DefaultTX: defaultUART4TX}
)
func init() {
UART0.Interrupt = interrupt.New(nxp.IRQ_UART0_RX_TX, _UART0.handleStatusInterrupt)
UART1.Interrupt = interrupt.New(nxp.IRQ_UART1_RX_TX, _UART1.handleStatusInterrupt)
UART2.Interrupt = interrupt.New(nxp.IRQ_UART2_RX_TX, _UART2.handleStatusInterrupt)
UART3.Interrupt = interrupt.New(nxp.IRQ_UART3_RX_TX, _UART3.handleStatusInterrupt)
UART4.Interrupt = interrupt.New(nxp.IRQ_UART4_RX_TX, _UART4.handleStatusInterrupt)
}
// Configure the UART.
func (u *UART) Configure(config UARTConfig) {
u.configure(config, true)
}
func (u *UART) configure(config UARTConfig, canSched bool) {
// from: serial_begin
if !u.Configured {
u.Transmitting.Set(0)
// turn on the clock
u.SCGC.Set(u.SCGCMask)
// configure pins
u.DefaultRX.Control().Set(nxp.PORT_PCR0_PE | nxp.PORT_PCR0_PS | nxp.PORT_PCR0_PFE | (3 << nxp.PORT_PCR0_MUX_Pos))
u.DefaultTX.Control().Set(nxp.PORT_PCR0_DSE | nxp.PORT_PCR0_SRE | (3 << nxp.PORT_PCR0_MUX_Pos))
u.C1.Set(nxp.UART_C1_ILT)
}
// default to 115200 baud
if config.BaudRate == 0 {
config.BaudRate = 115200
}
// copied from teensy core's BAUD2DIV macro
divisor := ((CPUFrequency() * 2) + (config.BaudRate >> 1)) / config.BaudRate
if divisor < 32 {
divisor = 32
}
if u.Configured {
// don't change baud rate mid transmit
if canSched {
u.Flush()
} else {
for u.Transmitting.Get() != 0 {
// busy wait flush
}
}
}
// set the divisor
u.BDH.Set(uint8((divisor >> 13) & 0x1F))
u.BDL.Set(uint8((divisor >> 5) & 0xFF))
u.C4.Set(uint8(divisor & 0x1F))
if !u.Configured {
u.Configured = true
u.C1.Set(nxp.UART_C1_ILT)
// configure TX and RX watermark
u.TWFIFO.Set(2) // causes bit TDRE of S1 to set
u.RWFIFO.Set(4) // causes bit RDRF of S1 to set
// enable FIFOs
u.PFIFO.Set(nxp.UART_PFIFO_TXFE | nxp.UART_PFIFO_RXFE)
// setup interrupts
u.C2.Set(uartC2TXInactive)
u.Interrupt.SetPriority(uartIRQPriority)
u.Interrupt.Enable()
}
}
func (u *UART) Disable() {
// from: serial_end
// check if the device has been enabled already
if !u.SCGC.HasBits(u.SCGCMask) {
return
}
u.Flush()
u.Interrupt.Disable()
u.C2.Set(0)
// reconfigure pin
u.DefaultRX.Configure(PinConfig{Mode: PinInputPullup})
u.DefaultTX.Configure(PinConfig{Mode: PinInputPullup})
// clear flags
u.S1.Get()
u.D.Get()
u.Buffer.Clear()
}
func (u *UART) Flush() {
for u.Transmitting.Get() != 0 {
gosched()
}
}
func (u *UART) handleStatusInterrupt(interrupt.Interrupt) {
// from: uart0_status_isr
// receive
if u.S1.HasBits(nxp.UART_S1_RDRF | nxp.UART_S1_IDLE) {
intrs := arm.DisableInterrupts()
avail := u.RCFIFO.Get()
if avail == 0 {
// The only way to clear the IDLE interrupt flag is
// to read the data register. But reading with no
// data causes a FIFO underrun, which causes the
// FIFO to return corrupted data. If anyone from
// Freescale reads this, what a poor design! There
// write should be a write-1-to-clear for IDLE.
u.D.Get()
// flushing the fifo recovers from the underrun,
// but there's a possible race condition where a
// new character could be received between reading
// RCFIFO == 0 and flushing the FIFO. To minimize
// the chance, interrupts are disabled so a higher
// priority interrupt (hopefully) doesn't delay.
// TODO: change this to disabling the IDLE interrupt
// which won't be simple, since we already manage
// which transmit interrupts are enabled.
u.CFIFO.Set(nxp.UART_CFIFO_RXFLUSH)
arm.EnableInterrupts(intrs)
} else {
arm.EnableInterrupts(intrs)
for {
u.Buffer.Put(u.D.Get())
avail--
if avail <= 0 {
break
}
}
}
}
// transmit
if u.C2.HasBits(nxp.UART_C2_TIE) && u.S1.HasBits(nxp.UART_S1_TDRE) {
data := make([]byte, 0, uartTXFIFODepth)
avail := uartTXFIFODepth - u.TCFIFO.Get()
// get avail bytes from ring buffer
for len(data) < int(avail) {
if b, ok := u.TXBuffer.Get(); ok {
data = append(data, b)
} else {
break
}
}
// write data to FIFO
l := len(data)
for i, b := range data {
if i == l-1 {
// only clear TDRE on last write, per the manual
u.S1.Get()
}
u.D.Set(b)
}
// if FIFO still has room, disable TIE, enable TCIE
if u.S1.HasBits(nxp.UART_S1_TDRE) {
u.C2.Set(uartC2TXCompleting)
}
}
// transmit complete
if u.C2.HasBits(nxp.UART_C2_TCIE) && u.S1.HasBits(nxp.UART_S1_TC) {
u.Transmitting.Set(0)
u.C2.Set(uartC2TXInactive)
}
}
// WriteByte writes a byte of data to the UART.
func (u *UART) writeByte(c byte) error {
if !u.Configured {
return ErrNotConfigured
}
for !u.TXBuffer.Put(c) {
gosched()
}
u.Transmitting.Set(1)
u.C2.Set(uartC2TXActive)
return nil
}
func (uart *UART) flush() {}
|