1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
//go:build rp2040
// +build rp2040
package machine
import (
"device/arm"
"device/rp"
"runtime/volatile"
"unsafe"
)
func CPUFrequency() uint32 {
return 125 * MHz
}
// Returns the period of a clock cycle for the raspberry pi pico in nanoseconds.
// Used in PWM API.
func cpuPeriod() uint32 {
return 1e9 / CPUFrequency()
}
// clockIndex identifies a hardware clock
type clockIndex uint8
const (
clkGPOUT0 clockIndex = iota // GPIO Muxing 0
clkGPOUT1 // GPIO Muxing 1
clkGPOUT2 // GPIO Muxing 2
clkGPOUT3 // GPIO Muxing 3
clkRef // Watchdog and timers reference clock
clkSys // Processors, bus fabric, memory, memory mapped registers
clkPeri // Peripheral clock for UART and SPI
clkUSB // USB clock
clkADC // ADC clock
clkRTC // Real time clock
numClocks
)
type clockType struct {
ctrl volatile.Register32
div volatile.Register32
selected volatile.Register32
}
type fc struct {
refKHz volatile.Register32
minKHz volatile.Register32
maxKHz volatile.Register32
delay volatile.Register32
interval volatile.Register32
src volatile.Register32
status volatile.Register32
result volatile.Register32
}
type clocksType struct {
clk [numClocks]clockType
resus struct {
ctrl volatile.Register32
status volatile.Register32
}
fc0 fc
wakeEN0 volatile.Register32
wakeEN1 volatile.Register32
sleepEN0 volatile.Register32
sleepEN1 volatile.Register32
enabled0 volatile.Register32
enabled1 volatile.Register32
intR volatile.Register32
intE volatile.Register32
intF volatile.Register32
intS volatile.Register32
}
var clocks = (*clocksType)(unsafe.Pointer(rp.CLOCKS))
var configuredFreq [numClocks]uint32
type clock struct {
*clockType
cix clockIndex
}
// clock returns the clock identified by cix.
func (clks *clocksType) clock(cix clockIndex) clock {
return clock{
&clks.clk[cix],
cix,
}
}
// hasGlitchlessMux returns true if clock contains a glitchless multiplexer.
//
// Clock muxing consists of two components:
//
// A glitchless mux, which can be switched freely, but whose inputs must be
// free-running.
//
// An auxiliary (glitchy) mux, whose output glitches when switched, but has
// no constraints on its inputs.
//
// Not all clocks have both types of mux.
func (clk *clock) hasGlitchlessMux() bool {
return clk.cix == clkSys || clk.cix == clkRef
}
// configure configures the clock by selecting the main clock source src
// and the auxiliary clock source auxsrc
// and finally setting the clock frequency to freq
// given the input clock source frequency srcFreq.
func (clk *clock) configure(src, auxsrc, srcFreq, freq uint32) {
if freq > srcFreq {
panic("clock frequency cannot be greater than source frequency")
}
// Div register is 24.8 int.frac divider so multiply by 2^8 (left shift by 8)
div := uint32((uint64(srcFreq) << 8) / uint64(freq))
// If increasing divisor, set divisor before source. Otherwise set source
// before divisor. This avoids a momentary overspeed when e.g. switching
// to a faster source and increasing divisor to compensate.
if div > clk.div.Get() {
clk.div.Set(div)
}
// If switching a glitchless slice (ref or sys) to an aux source, switch
// away from aux *first* to avoid passing glitches when changing aux mux.
// Assume (!!!) glitchless source 0 is no faster than the aux source.
if clk.hasGlitchlessMux() && src == rp.CLOCKS_CLK_SYS_CTRL_SRC_CLKSRC_CLK_SYS_AUX {
clk.ctrl.ClearBits(rp.CLOCKS_CLK_REF_CTRL_SRC_Msk)
for !clk.selected.HasBits(1) {
}
} else
// If no glitchless mux, cleanly stop the clock to avoid glitches
// propagating when changing aux mux. Note it would be a really bad idea
// to do this on one of the glitchless clocks (clkSys, clkRef).
{
// Disable clock. On clkRef and clkSys this does nothing,
// all other clocks have the ENABLE bit in the same position.
clk.ctrl.ClearBits(rp.CLOCKS_CLK_GPOUT0_CTRL_ENABLE_Msk)
if configuredFreq[clk.cix] > 0 {
// Delay for 3 cycles of the target clock, for ENABLE propagation.
// Note XOSC_COUNT is not helpful here because XOSC is not
// necessarily running, nor is timer... so, 3 cycles per loop:
delayCyc := configuredFreq[clkSys]/configuredFreq[clk.cix] + 1
for delayCyc != 0 {
// This could be done more efficiently but TinyGo inline
// assembly is not yet capable enough to express that. In the
// meantime, this forces at least 3 cycles per loop.
delayCyc--
arm.Asm("nop\nnop\nnop")
}
}
}
// Set aux mux first, and then glitchless mux if this clock has one.
clk.ctrl.ReplaceBits(auxsrc<<rp.CLOCKS_CLK_SYS_CTRL_AUXSRC_Pos,
rp.CLOCKS_CLK_SYS_CTRL_AUXSRC_Msk, 0)
if clk.hasGlitchlessMux() {
clk.ctrl.ReplaceBits(src<<rp.CLOCKS_CLK_REF_CTRL_SRC_Pos,
rp.CLOCKS_CLK_REF_CTRL_SRC_Msk, 0)
for !clk.selected.HasBits(1 << src) {
}
}
// Enable clock. On clkRef and clkSys this does nothing,
// all other clocks have the ENABLE bit in the same position.
clk.ctrl.SetBits(rp.CLOCKS_CLK_GPOUT0_CTRL_ENABLE)
// Now that the source is configured, we can trust that the user-supplied
// divisor is a safe value.
clk.div.Set(div)
// Store the configured frequency
configuredFreq[clk.cix] = freq
}
// init initializes the clock hardware.
//
// Must be called before any other clock function.
func (clks *clocksType) init() {
// Start the watchdog tick
watchdog.startTick(xoscFreq)
// Disable resus that may be enabled from previous software
clks.resus.ctrl.Set(0)
// Enable the xosc
xosc.init()
// Before we touch PLLs, switch sys and ref cleanly away from their aux sources.
clks.clk[clkSys].ctrl.ClearBits(rp.CLOCKS_CLK_SYS_CTRL_SRC_Msk)
for !clks.clk[clkSys].selected.HasBits(0x1) {
}
clks.clk[clkRef].ctrl.ClearBits(rp.CLOCKS_CLK_REF_CTRL_SRC_Msk)
for !clks.clk[clkRef].selected.HasBits(0x1) {
}
// Configure PLLs
// REF FBDIV VCO POSTDIV
// pllSys: 12 / 1 = 12MHz * 125 = 1500MHZ / 6 / 2 = 125MHz
// pllUSB: 12 / 1 = 12MHz * 40 = 480 MHz / 5 / 2 = 48MHz
pllSys.init(1, 1500*MHz, 6, 2)
pllUSB.init(1, 480*MHz, 5, 2)
// Configure clocks
// clkRef = xosc (12MHz) / 1 = 12MHz
clkref := clks.clock(clkRef)
clkref.configure(rp.CLOCKS_CLK_REF_CTRL_SRC_XOSC_CLKSRC,
0, // No aux mux
12*MHz,
12*MHz)
// clkSys = pllSys (125MHz) / 1 = 125MHz
clksys := clks.clock(clkSys)
clksys.configure(rp.CLOCKS_CLK_SYS_CTRL_SRC_CLKSRC_CLK_SYS_AUX,
rp.CLOCKS_CLK_SYS_CTRL_AUXSRC_CLKSRC_PLL_SYS,
125*MHz,
125*MHz)
// clkUSB = pllUSB (48MHz) / 1 = 48MHz
clkusb := clks.clock(clkUSB)
clkusb.configure(0, // No GLMUX
rp.CLOCKS_CLK_USB_CTRL_AUXSRC_CLKSRC_PLL_USB,
48*MHz,
48*MHz)
// clkADC = pllUSB (48MHZ) / 1 = 48MHz
clkadc := clks.clock(clkADC)
clkadc.configure(0, // No GLMUX
rp.CLOCKS_CLK_ADC_CTRL_AUXSRC_CLKSRC_PLL_USB,
48*MHz,
48*MHz)
// clkRTC = pllUSB (48MHz) / 1024 = 46875Hz
clkrtc := clks.clock(clkRTC)
clkrtc.configure(0, // No GLMUX
rp.CLOCKS_CLK_RTC_CTRL_AUXSRC_CLKSRC_PLL_USB,
48*MHz,
46875)
// clkPeri = clkSys. Used as reference clock for Peripherals.
// No dividers so just select and enable.
// Normally choose clkSys or clkUSB.
clkperi := clks.clock(clkPeri)
clkperi.configure(0,
rp.CLOCKS_CLK_PERI_CTRL_AUXSRC_CLK_SYS,
125*MHz,
125*MHz)
}
|