1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
//go:build rp2040
package machine
import (
"device/rp"
"errors"
"internal/itoa"
)
// I2C on the RP2040.
var (
I2C0 = &_I2C0
_I2C0 = I2C{
Bus: rp.I2C0,
}
I2C1 = &_I2C1
_I2C1 = I2C{
Bus: rp.I2C1,
}
)
// Features: Taken from datasheet.
// Default master mode, with slave mode available (not simulataneously).
// Default slave address of RP2040: 0x055
// Supports 10-bit addressing in Master mode
// 16-element transmit buffer
// 16-element receive buffer
// Can be driven from DMA
// Can generate interrupts
// Fast mode plus max transfer speed (1000kb/s)
// GPIO config
// Each controller must connect its clock SCL and data SDA to one pair of GPIOs.
// The I2C standard requires that drivers drivea signal low, or when not driven the signal will be pulled high.
// This applies to SCL and SDA. The GPIO pads should beconfigured for:
// Pull-up enabled
// Slew rate limited
// Schmitt trigger enabled
// Note: There should also be external pull-ups on the board as the internal pad pull-ups may not be strong enough to pull upexternal circuits.
// I2CConfig is used to store config info for I2C.
type I2CConfig struct {
Frequency uint32
// SDA/SCL Serial Data and clock pins. Refer to datasheet to see
// which pins match the desired bus.
SDA, SCL Pin
}
type I2C struct {
Bus *rp.I2C0_Type
restartOnNext bool
}
var (
ErrInvalidI2CBaudrate = errors.New("invalid i2c baudrate")
ErrInvalidTgtAddr = errors.New("invalid target i2c address not in 0..0x80 or is reserved")
ErrI2CGeneric = errors.New("i2c error")
ErrRP2040I2CDisable = errors.New("i2c rp2040 peripheral timeout in disable")
errInvalidI2CSDA = errors.New("invalid I2C SDA pin")
errInvalidI2CSCL = errors.New("invalid I2C SCL pin")
)
// Tx performs a write and then a read transfer placing the result in
// in r.
//
// Passing a nil value for w or r skips the transfer corresponding to write
// or read, respectively.
//
// i2c.Tx(addr, nil, r)
//
// Performs only a read transfer.
//
// i2c.Tx(addr, w, nil)
//
// Performs only a write transfer.
func (i2c *I2C) Tx(addr uint16, w, r []byte) error {
// timeout in microseconds.
const timeout = 40 * 1000 // 40ms is a reasonable time for a real-time system.
return i2c.tx(uint8(addr), w, r, timeout)
}
// Configure initializes i2c peripheral and configures I2C config's pins passed.
// Here's a list of valid SDA and SCL GPIO pins on bus I2C0 of the rp2040:
//
// SDA: 0, 4, 8, 12, 16, 20
// SCL: 1, 5, 9, 13, 17, 21
//
// Same as above for I2C1 bus:
//
// SDA: 2, 6, 10, 14, 18, 26
// SCL: 3, 7, 11, 15, 19, 27
func (i2c *I2C) Configure(config I2CConfig) error {
const defaultBaud uint32 = 100_000 // 100kHz standard mode
if config.SCL == 0 && config.SDA == 0 {
// If config pins are zero valued or clock pin is invalid then we set default values.
switch i2c.Bus {
case rp.I2C0:
config.SCL = I2C0_SCL_PIN
config.SDA = I2C0_SDA_PIN
case rp.I2C1:
config.SCL = I2C1_SCL_PIN
config.SDA = I2C1_SDA_PIN
}
}
var okSDA, okSCL bool
switch i2c.Bus {
case rp.I2C0:
okSDA = config.SDA%4 == 0
okSCL = (config.SCL+1)%4 == 0
case rp.I2C1:
okSDA = (config.SDA+2)%4 == 0
okSCL = (config.SCL+3)%4 == 0
}
if !okSDA {
return errInvalidI2CSDA
} else if !okSCL {
return errInvalidI2CSCL
}
if config.Frequency == 0 {
config.Frequency = defaultBaud
}
config.SDA.Configure(PinConfig{PinI2C})
config.SCL.Configure(PinConfig{PinI2C})
return i2c.init(config)
}
// SetBaudRate sets the I2C frequency. It has the side effect of also
// enabling the I2C hardware if disabled beforehand.
//
//go:inline
func (i2c *I2C) SetBaudRate(br uint32) error {
if br == 0 {
return ErrInvalidI2CBaudrate
}
// I2C is synchronous design that runs from clk_sys
freqin := CPUFrequency()
// TODO there are some subtleties to I2C timing which we are completely ignoring here
period := (freqin + br/2) / br
lcnt := period * 3 / 5 // oof this one hurts
hcnt := period - lcnt
// Check for out-of-range divisors:
if hcnt > rp.I2C0_IC_FS_SCL_HCNT_IC_FS_SCL_HCNT_Msk || hcnt < 8 || lcnt > rp.I2C0_IC_FS_SCL_LCNT_IC_FS_SCL_LCNT_Msk || lcnt < 8 {
return ErrInvalidI2CBaudrate
}
// Per I2C-bus specification a device in standard or fast mode must
// internally provide a hold time of at least 300ns for the SDA signal to
// bridge the undefined region of the falling edge of SCL. A smaller hold
// time of 120ns is used for fast mode plus.
// sda_tx_hold_count = freq_in [cycles/s] * 300ns * (1s / 1e9ns)
// Reduce 300/1e9 to 3/1e7 to avoid numbers that don't fit in uint.
// Add 1 to avoid division truncation.
sdaTxHoldCnt := ((freqin * 3) / 10000000) + 1
if br >= 1_000_000 {
// sda_tx_hold_count = freq_in [cycles/s] * 120ns * (1s / 1e9ns)
// Reduce 120/1e9 to 3/25e6 to avoid numbers that don't fit in uint.
// Add 1 to avoid division truncation.
sdaTxHoldCnt = ((freqin * 3) / 25000000) + 1
}
if sdaTxHoldCnt > lcnt-2 {
return ErrInvalidI2CBaudrate
}
err := i2c.disable()
if err != nil {
return err
}
// Always use "fast" mode (<= 400 kHz, works fine for standard mode too)
i2c.Bus.IC_CON.ReplaceBits(rp.I2C0_IC_CON_SPEED_FAST<<rp.I2C0_IC_CON_SPEED_Pos, rp.I2C0_IC_CON_SPEED_Msk, 0)
i2c.Bus.IC_FS_SCL_HCNT.Set(hcnt)
i2c.Bus.IC_FS_SCL_LCNT.Set(lcnt)
i2c.Bus.IC_FS_SPKLEN.Set(u32max(1, lcnt/16))
i2c.Bus.IC_SDA_HOLD.ReplaceBits(sdaTxHoldCnt<<rp.I2C0_IC_SDA_HOLD_IC_SDA_TX_HOLD_Pos, rp.I2C0_IC_SDA_HOLD_IC_SDA_TX_HOLD_Msk, 0)
i2c.enable()
return nil
}
//go:inline
func (i2c *I2C) enable() {
i2c.Bus.IC_ENABLE.ReplaceBits(rp.I2C0_IC_ENABLE_ENABLE<<rp.I2C0_IC_ENABLE_ENABLE_Pos, rp.I2C0_IC_ENABLE_ENABLE_Msk, 0)
}
// Implemented as per 4.3.10.3. Disabling DW_apb_i2c section.
//
//go:inline
func (i2c *I2C) disable() error {
const MAX_T_POLL_COUNT = 64 // 64 us timeout corresponds to around 1000kb/s i2c transfer rate.
deadline := ticks() + MAX_T_POLL_COUNT
i2c.Bus.IC_ENABLE.Set(0)
for i2c.Bus.IC_ENABLE_STATUS.Get()&1 != 0 {
if ticks() > deadline {
return ErrRP2040I2CDisable
}
}
return nil
}
//go:inline
func (i2c *I2C) init(config I2CConfig) error {
i2c.reset()
if err := i2c.disable(); err != nil {
return err
}
i2c.restartOnNext = false
// Configure as a fast-mode master with RepStart support, 7-bit addresses
i2c.Bus.IC_CON.Set((rp.I2C0_IC_CON_SPEED_FAST << rp.I2C0_IC_CON_SPEED_Pos) |
rp.I2C0_IC_CON_MASTER_MODE | rp.I2C0_IC_CON_IC_SLAVE_DISABLE |
rp.I2C0_IC_CON_IC_RESTART_EN | rp.I2C0_IC_CON_TX_EMPTY_CTRL) // sets TX_EMPTY_CTRL to enable TX_EMPTY interrupt status
// Set FIFO watermarks to 1 to make things simpler. This is encoded by a register value of 0.
i2c.Bus.IC_TX_TL.Set(0)
i2c.Bus.IC_RX_TL.Set(0)
// Always enable the DREQ signalling -- harmless if DMA isn't listening
i2c.Bus.IC_DMA_CR.Set(rp.I2C0_IC_DMA_CR_TDMAE | rp.I2C0_IC_DMA_CR_RDMAE)
return i2c.SetBaudRate(config.Frequency)
}
// reset sets I2C register RESET bits in the reset peripheral and then clears them.
//
//go:inline
func (i2c *I2C) reset() {
resetVal := i2c.deinit()
rp.RESETS.RESET.ClearBits(resetVal)
// Wait until reset is done.
for !rp.RESETS.RESET_DONE.HasBits(resetVal) {
}
}
// deinit sets reset bit for I2C. Must call reset to reenable I2C after deinit.
//
//go:inline
func (i2c *I2C) deinit() (resetVal uint32) {
switch {
case i2c.Bus == rp.I2C0:
resetVal = rp.RESETS_RESET_I2C0
case i2c.Bus == rp.I2C1:
resetVal = rp.RESETS_RESET_I2C1
}
// Perform I2C reset.
rp.RESETS.RESET.SetBits(resetVal)
return resetVal
}
// tx performs blocking write followed by read to I2C bus.
func (i2c *I2C) tx(addr uint8, tx, rx []byte, timeout_us uint64) (err error) {
deadline := ticks() + timeout_us
if addr >= 0x80 || isReservedI2CAddr(addr) {
return ErrInvalidTgtAddr
}
txlen := len(tx)
rxlen := len(rx)
// Quick return if possible.
if txlen == 0 && rxlen == 0 {
return nil
}
err = i2c.disable()
if err != nil {
return err
}
i2c.Bus.IC_TAR.Set(uint32(addr))
i2c.enable()
abort := false
var abortReason uint32
for txCtr := 0; txCtr < txlen; txCtr++ {
if abort {
break
}
first := txCtr == 0
last := txCtr == txlen-1 && rxlen == 0
i2c.Bus.IC_DATA_CMD.Set(
(boolToBit(first && i2c.restartOnNext) << rp.I2C0_IC_DATA_CMD_RESTART_Pos) |
(boolToBit(last) << rp.I2C0_IC_DATA_CMD_STOP_Pos) |
uint32(tx[txCtr]))
// Wait until the transmission of the address/data from the internal
// shift register has completed. For this to function correctly, the
// TX_EMPTY_CTRL flag in IC_CON must be set. The TX_EMPTY_CTRL flag
// was set in i2c_init.
// IC_RAW_INTR_STAT_TX_EMPTY: This bit is set to 1 when the transmit buffer is at or below
// the threshold value set in the IC_TX_TL register and the
// transmission of the address/data from the internal shift
// register for the most recently popped command is
// completed. It is automatically cleared by hardware when
// the buffer level goes above the threshold. When
// IC_ENABLE[0] is set to 0, the TX FIFO is flushed and held
// in reset. There the TX FIFO looks like it has no data within
// it, so this bit is set to 1, provided there is activity in the
// master or slave state machines. When there is no longer
// any activity, then with ic_en=0, this bit is set to 0.
for !i2c.interrupted(rp.I2C0_IC_RAW_INTR_STAT_TX_EMPTY) {
if ticks() > deadline {
return errI2CWriteTimeout // If there was a timeout, don't attempt to do anything else.
}
}
abortReason = i2c.getAbortReason()
if abortReason != 0 {
i2c.clearAbortReason()
abort = true
}
if abort || last {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occured.
// TODO Could there be an abort while waiting for the STOP
// condition here? If so, additional code would be needed here
// to take care of the abort.
for !i2c.interrupted(rp.I2C0_IC_RAW_INTR_STAT_STOP_DET) {
if ticks() > deadline {
return errI2CWriteTimeout
}
}
i2c.Bus.IC_CLR_STOP_DET.Get()
}
}
if rxlen > 0 && !abort {
for rxCtr := 0; rxCtr < rxlen; rxCtr++ {
first := rxCtr == 0
last := rxCtr == rxlen-1
for i2c.writeAvailable() == 0 {
}
i2c.Bus.IC_DATA_CMD.Set(
boolToBit(first && i2c.restartOnNext)<<rp.I2C0_IC_DATA_CMD_RESTART_Pos |
boolToBit(last)<<rp.I2C0_IC_DATA_CMD_STOP_Pos |
rp.I2C0_IC_DATA_CMD_CMD) // -> 1 for read
for !abort && i2c.readAvailable() == 0 {
abortReason = i2c.getAbortReason()
i2c.clearAbortReason()
if abortReason != 0 {
abort = true
}
if ticks() > deadline {
return errI2CReadTimeout // If there was a timeout, don't attempt to do anything else.
}
}
if abort {
break
}
rx[rxCtr] = uint8(i2c.Bus.IC_DATA_CMD.Get())
}
}
// From Pico SDK: A lot of things could have just happened due to the ingenious and
// creative design of I2C. Try to figure things out.
if abort {
switch {
case abortReason == 0 || abortReason&rp.I2C0_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK != 0:
// No reported errors - seems to happen if there is nothing connected to the bus.
// Address byte not acknowledged
err = ErrI2CGeneric
case abortReason&rp.I2C0_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK != 0:
// Address acknowledged, some data not acknowledged
fallthrough
default:
err = makeI2CAbortError(abortReason)
}
}
return err
}
// writeAvailable determines non-blocking write space available
//
//go:inline
func (i2c *I2C) writeAvailable() uint32 {
return rp.I2C0_IC_COMP_PARAM_1_TX_BUFFER_DEPTH_Pos - i2c.Bus.IC_TXFLR.Get()
}
// readAvailable determines number of bytes received
//
//go:inline
func (i2c *I2C) readAvailable() uint32 {
return i2c.Bus.IC_RXFLR.Get()
}
// Equivalent to IC_CLR_TX_ABRT.Get() (side effect clears ABORT_REASON)
//
//go:inline
func (i2c *I2C) clearAbortReason() {
// Note clearing the abort flag also clears the reason, and
// this instance of flag is clear-on-read! Note also the
// IC_CLR_TX_ABRT register always reads as 0.
i2c.Bus.IC_CLR_TX_ABRT.Get()
}
// getAbortReason reads IC_TX_ABRT_SOURCE register.
//
//go:inline
func (i2c *I2C) getAbortReason() uint32 {
return i2c.Bus.IC_TX_ABRT_SOURCE.Get()
}
// returns true if RAW_INTR_STAT bits in mask are all set. performs:
//
// RAW_INTR_STAT & mask == mask
//
//go:inline
func (i2c *I2C) interrupted(mask uint32) bool {
reg := i2c.Bus.IC_RAW_INTR_STAT.Get()
return reg&mask == mask
}
type i2cAbortError uint32
func (b i2cAbortError) Error() string {
return "i2c abort, reason " + itoa.Uitoa(uint(b))
}
//go:inline
func makeI2CAbortError(reason uint32) error {
return i2cAbortError(reason)
}
//go:inline
func boolToBit(a bool) uint32 {
if a {
return 1
}
return 0
}
//go:inline
func u32max(a, b uint32) uint32 {
if a > b {
return a
}
return b
}
//go:inline
func isReservedI2CAddr(addr uint8) bool {
return (addr&0x78) == 0 || (addr&0x78) == 0x78
}
|