1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
//go:build rp2040
package machine
import (
"bytes"
"runtime/interrupt"
"unsafe"
)
/*
// https://github.com/raspberrypi/pico-sdk
// src/rp2_common/pico_bootrom/include/pico/bootrom.h
#define ROM_FUNC_POPCOUNT32 ROM_TABLE_CODE('P', '3')
#define ROM_FUNC_REVERSE32 ROM_TABLE_CODE('R', '3')
#define ROM_FUNC_CLZ32 ROM_TABLE_CODE('L', '3')
#define ROM_FUNC_CTZ32 ROM_TABLE_CODE('T', '3')
#define ROM_FUNC_MEMSET ROM_TABLE_CODE('M', 'S')
#define ROM_FUNC_MEMSET4 ROM_TABLE_CODE('S', '4')
#define ROM_FUNC_MEMCPY ROM_TABLE_CODE('M', 'C')
#define ROM_FUNC_MEMCPY44 ROM_TABLE_CODE('C', '4')
#define ROM_FUNC_RESET_USB_BOOT ROM_TABLE_CODE('U', 'B')
#define ROM_FUNC_CONNECT_INTERNAL_FLASH ROM_TABLE_CODE('I', 'F')
#define ROM_FUNC_FLASH_EXIT_XIP ROM_TABLE_CODE('E', 'X')
#define ROM_FUNC_FLASH_RANGE_ERASE ROM_TABLE_CODE('R', 'E')
#define ROM_FUNC_FLASH_RANGE_PROGRAM ROM_TABLE_CODE('R', 'P')
#define ROM_FUNC_FLASH_FLUSH_CACHE ROM_TABLE_CODE('F', 'C')
#define ROM_FUNC_FLASH_ENTER_CMD_XIP ROM_TABLE_CODE('C', 'X')
#define ROM_TABLE_CODE(c1, c2) ((c1) | ((c2) << 8))
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned long uint32_t;
typedef unsigned long size_t;
typedef unsigned long uintptr_t;
#define false 0
#define true 1
typedef int bool;
#define ram_func __attribute__((section(".ramfuncs"),noinline))
typedef void *(*rom_table_lookup_fn)(uint16_t *table, uint32_t code);
typedef void __attribute__((noreturn)) (*rom_reset_usb_boot_fn)(uint32_t, uint32_t);
typedef void (*flash_init_boot2_copyout_fn)(void);
typedef void (*flash_enable_xip_via_boot2_fn)(void);
typedef void (*flash_exit_xip_fn)(void);
typedef void (*flash_flush_cache_fn)(void);
typedef void (*flash_connect_internal_fn)(void);
typedef void (*flash_range_erase_fn)(uint32_t, size_t, uint32_t, uint16_t);
typedef void (*flash_range_program_fn)(uint32_t, const uint8_t*, size_t);
static inline __attribute__((always_inline)) void __compiler_memory_barrier(void) {
__asm__ volatile ("" : : : "memory");
}
#define rom_hword_as_ptr(rom_address) (void *)(uintptr_t)(*(uint16_t *)(uintptr_t)(rom_address))
void *rom_func_lookup(uint32_t code) {
rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn) rom_hword_as_ptr(0x18);
uint16_t *func_table = (uint16_t *) rom_hword_as_ptr(0x14);
return rom_table_lookup(func_table, code);
}
void reset_usb_boot(uint32_t usb_activity_gpio_pin_mask, uint32_t disable_interface_mask) {
rom_reset_usb_boot_fn func = (rom_reset_usb_boot_fn) rom_func_lookup(ROM_FUNC_RESET_USB_BOOT);
func(usb_activity_gpio_pin_mask, disable_interface_mask);
}
#define FLASH_BLOCK_ERASE_CMD 0xd8
#define FLASH_PAGE_SIZE (1u << 8)
#define FLASH_SECTOR_SIZE (1u << 12)
#define FLASH_BLOCK_SIZE (1u << 16)
#define BOOT2_SIZE_WORDS 64
#define XIP_BASE 0x10000000
static uint32_t boot2_copyout[BOOT2_SIZE_WORDS];
static bool boot2_copyout_valid = false;
static ram_func void flash_init_boot2_copyout() {
if (boot2_copyout_valid)
return;
for (int i = 0; i < BOOT2_SIZE_WORDS; ++i)
boot2_copyout[i] = ((uint32_t *)XIP_BASE)[i];
__compiler_memory_barrier();
boot2_copyout_valid = true;
}
static ram_func void flash_enable_xip_via_boot2() {
((void (*)(void))boot2_copyout+1)();
}
// See https://github.com/raspberrypi/pico-sdk/blob/master/src/rp2_common/hardware_flash/flash.c#L86
void ram_func flash_range_write(uint32_t offset, const uint8_t *data, size_t count)
{
flash_range_program_fn flash_range_program_func = (flash_range_program_fn) rom_func_lookup(ROM_FUNC_FLASH_RANGE_PROGRAM);
flash_connect_internal_fn flash_connect_internal_func = (flash_connect_internal_fn) rom_func_lookup(ROM_FUNC_CONNECT_INTERNAL_FLASH);
flash_exit_xip_fn flash_exit_xip_func = (flash_exit_xip_fn) rom_func_lookup(ROM_FUNC_FLASH_EXIT_XIP);
flash_flush_cache_fn flash_flush_cache_func = (flash_flush_cache_fn) rom_func_lookup(ROM_FUNC_FLASH_FLUSH_CACHE);
flash_init_boot2_copyout();
__compiler_memory_barrier();
flash_connect_internal_func();
flash_exit_xip_func();
flash_range_program_func(offset, data, count);
flash_flush_cache_func();
flash_enable_xip_via_boot2();
}
void ram_func flash_erase_blocks(uint32_t offset, size_t count)
{
flash_range_erase_fn flash_range_erase_func = (flash_range_erase_fn) rom_func_lookup(ROM_FUNC_FLASH_RANGE_ERASE);
flash_connect_internal_fn flash_connect_internal_func = (flash_connect_internal_fn) rom_func_lookup(ROM_FUNC_CONNECT_INTERNAL_FLASH);
flash_exit_xip_fn flash_exit_xip_func = (flash_exit_xip_fn) rom_func_lookup(ROM_FUNC_FLASH_EXIT_XIP);
flash_flush_cache_fn flash_flush_cache_func = (flash_flush_cache_fn) rom_func_lookup(ROM_FUNC_FLASH_FLUSH_CACHE);
flash_init_boot2_copyout();
__compiler_memory_barrier();
flash_connect_internal_func();
flash_exit_xip_func();
flash_range_erase_func(offset, count, FLASH_BLOCK_SIZE, FLASH_BLOCK_ERASE_CMD);
flash_flush_cache_func();
flash_enable_xip_via_boot2();
}
*/
import "C"
// EnterBootloader should perform a system reset in preparation
// to switch to the bootloader to flash new firmware.
func EnterBootloader() {
C.reset_usb_boot(0, 0)
}
// Flash related code
const memoryStart = C.XIP_BASE // memory start for purpose of erase
// compile-time check for ensuring we fulfill BlockDevice interface
var _ BlockDevice = flashBlockDevice{}
var Flash flashBlockDevice
type flashBlockDevice struct {
}
// ReadAt reads the given number of bytes from the block device.
func (f flashBlockDevice) ReadAt(p []byte, off int64) (n int, err error) {
if readAddress(off) > FlashDataEnd() {
return 0, errFlashCannotReadPastEOF
}
data := unsafe.Slice((*byte)(unsafe.Pointer(readAddress(off))), len(p))
copy(p, data)
return len(p), nil
}
// WriteAt writes the given number of bytes to the block device.
// Only word (32 bits) length data can be programmed.
// If the length of p is not long enough it will be padded with 0xFF bytes.
// This method assumes that the destination is already erased.
func (f flashBlockDevice) WriteAt(p []byte, off int64) (n int, err error) {
if writeAddress(off)+uintptr(C.XIP_BASE) > FlashDataEnd() {
return 0, errFlashCannotWritePastEOF
}
state := interrupt.Disable()
defer interrupt.Restore(state)
// rp2040 writes to offset, not actual address
// e.g. real address 0x10003000 is written to at
// 0x00003000
address := writeAddress(off)
padded := f.pad(p)
C.flash_range_write(C.uint32_t(address),
(*C.uint8_t)(unsafe.Pointer(&padded[0])),
C.ulong(len(padded)))
return len(padded), nil
}
// Size returns the number of bytes in this block device.
func (f flashBlockDevice) Size() int64 {
return int64(FlashDataEnd() - FlashDataStart())
}
const writeBlockSize = 1 << 8
// WriteBlockSize returns the block size in which data can be written to
// memory. It can be used by a client to optimize writes, non-aligned writes
// should always work correctly.
func (f flashBlockDevice) WriteBlockSize() int64 {
return writeBlockSize
}
const eraseBlockSizeValue = 1 << 12
func eraseBlockSize() int64 {
return eraseBlockSizeValue
}
// EraseBlockSize returns the smallest erasable area on this particular chip
// in bytes. This is used for the block size in EraseBlocks.
func (f flashBlockDevice) EraseBlockSize() int64 {
return eraseBlockSize()
}
// EraseBlocks erases the given number of blocks. An implementation may
// transparently coalesce ranges of blocks into larger bundles if the chip
// supports this. The start and len parameters are in block numbers, use
// EraseBlockSize to map addresses to blocks.
func (f flashBlockDevice) EraseBlocks(start, length int64) error {
address := writeAddress(start * f.EraseBlockSize())
if address+uintptr(C.XIP_BASE) > FlashDataEnd() {
return errFlashCannotErasePastEOF
}
state := interrupt.Disable()
defer interrupt.Restore(state)
C.flash_erase_blocks(C.uint32_t(address), C.ulong(length*f.EraseBlockSize()))
return nil
}
// pad data if needed so it is long enough for correct byte alignment on writes.
func (f flashBlockDevice) pad(p []byte) []byte {
overflow := int64(len(p)) % f.WriteBlockSize()
if overflow == 0 {
return p
}
padding := bytes.Repeat([]byte{0xff}, int(f.WriteBlockSize()-overflow))
return append(p, padding...)
}
// return the correct address to be used for write
func writeAddress(off int64) uintptr {
return readAddress(off) - uintptr(C.XIP_BASE)
}
// return the correct address to be used for reads
func readAddress(off int64) uintptr {
return FlashDataStart() + uintptr(off)
}
|