1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
//go:build sam && atsamd21
package runtime
import (
"device/arm"
"device/sam"
"machine"
"machine/usb/cdc"
"runtime/interrupt"
"runtime/volatile"
"unsafe"
)
type timeUnit int64
//export Reset_Handler
func main() {
preinit()
run()
exit(0)
}
func init() {
initClocks()
initRTC()
initSERCOMClocks()
initUSBClock()
initADCClock()
cdc.EnableUSBCDC()
machine.USBDev.Configure(machine.UARTConfig{})
machine.InitSerial()
}
func putchar(c byte) {
machine.Serial.WriteByte(c)
}
func getchar() byte {
for machine.Serial.Buffered() == 0 {
Gosched()
}
v, _ := machine.Serial.ReadByte()
return v
}
func buffered() int {
return machine.Serial.Buffered()
}
func initClocks() {
// Set 1 Flash Wait State for 48MHz, required for 3.3V operation according to SAMD21 Datasheet
sam.NVMCTRL.CTRLB.SetBits(sam.NVMCTRL_CTRLB_RWS_HALF << sam.NVMCTRL_CTRLB_RWS_Pos)
// Turn on the digital interface clock
sam.PM.APBAMASK.SetBits(sam.PM_APBAMASK_GCLK_)
// turn off RTC
sam.PM.APBAMASK.ClearBits(sam.PM_APBAMASK_RTC_)
// Enable OSC32K clock (Internal 32.768Hz oscillator).
// This requires registers that are not included in the SVD file.
// This is from samd21g18a.h and nvmctrl.h:
//
// #define NVMCTRL_OTP4 0x00806020
//
// #define SYSCTRL_FUSES_OSC32K_CAL_ADDR (NVMCTRL_OTP4 + 4)
// #define SYSCTRL_FUSES_OSC32K_CAL_Pos 6 /** (NVMCTRL_OTP4) OSC32K Calibration */
// #define SYSCTRL_FUSES_OSC32K_CAL_Msk (0x7Fu << SYSCTRL_FUSES_OSC32K_CAL_Pos)
// #define SYSCTRL_FUSES_OSC32K_CAL(value) ((SYSCTRL_FUSES_OSC32K_CAL_Msk & ((value) << SYSCTRL_FUSES_OSC32K_CAL_Pos)))
// u32_t fuse = *(u32_t *)FUSES_OSC32K_CAL_ADDR;
// u32_t calib = (fuse & FUSES_OSC32K_CAL_Msk) >> FUSES_OSC32K_CAL_Pos;
fuse := *(*uint32)(unsafe.Pointer(uintptr(0x00806020) + 4))
calib := (fuse & uint32(0x7f<<6)) >> 6
// SYSCTRL_OSC32K_CALIB(calib) |
// SYSCTRL_OSC32K_STARTUP(0x6u) |
// SYSCTRL_OSC32K_EN32K | SYSCTRL_OSC32K_ENABLE;
sam.SYSCTRL.OSC32K.Set((calib << sam.SYSCTRL_OSC32K_CALIB_Pos) |
(0x6 << sam.SYSCTRL_OSC32K_STARTUP_Pos) |
sam.SYSCTRL_OSC32K_EN32K |
sam.SYSCTRL_OSC32K_EN1K |
sam.SYSCTRL_OSC32K_ENABLE)
// Wait for oscillator stabilization
for !sam.SYSCTRL.PCLKSR.HasBits(sam.SYSCTRL_PCLKSR_OSC32KRDY) {
}
// Software reset the module to ensure it is re-initialized correctly
sam.GCLK.CTRL.Set(sam.GCLK_CTRL_SWRST)
// Wait for reset to complete
for sam.GCLK.CTRL.HasBits(sam.GCLK_CTRL_SWRST) && sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
// Put OSC32K as source of Generic Clock Generator 1
sam.GCLK.GENDIV.Set((1 << sam.GCLK_GENDIV_ID_Pos) |
(0 << sam.GCLK_GENDIV_DIV_Pos))
waitForSync()
// GCLK_GENCTRL_ID(1) | GCLK_GENCTRL_SRC_OSC32K | GCLK_GENCTRL_GENEN;
sam.GCLK.GENCTRL.Set((1 << sam.GCLK_GENCTRL_ID_Pos) |
(sam.GCLK_GENCTRL_SRC_OSC32K << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_GENEN)
waitForSync()
// Use Generic Clock Generator 1 as source for Generic Clock Multiplexer 0 (DFLL48M reference)
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_DFLL48 << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK1 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
waitForSync()
// Remove the OnDemand mode, Bug http://avr32.icgroup.norway.atmel.com/bugzilla/show_bug.cgi?id=9905
sam.SYSCTRL.DFLLCTRL.Set(sam.SYSCTRL_DFLLCTRL_ENABLE)
// Wait for ready
for !sam.SYSCTRL.PCLKSR.HasBits(sam.SYSCTRL_PCLKSR_DFLLRDY) {
}
// Handle DFLL calibration based on info learned from Arduino SAMD implementation,
// using value stored in fuse.
// #define SYSCTRL_FUSES_DFLL48M_COARSE_CAL_ADDR (NVMCTRL_OTP4 + 4)
// #define SYSCTRL_FUSES_DFLL48M_COARSE_CAL_Pos 26 /**< \brief (NVMCTRL_OTP4) DFLL48M Coarse Calibration */
// #define SYSCTRL_FUSES_DFLL48M_COARSE_CAL_Msk (0x3Fu << SYSCTRL_FUSES_DFLL48M_COARSE_CAL_Pos)
// #define SYSCTRL_FUSES_DFLL48M_COARSE_CAL(value) ((SYSCTRL_FUSES_DFLL48M_COARSE_CAL_Msk & ((value) << SYSCTRL_FUSES_DFLL48M_COARSE_CAL_Pos)))
coarse := (fuse >> 26) & 0x3F
if coarse == 0x3f {
coarse = 0x1f
}
sam.SYSCTRL.DFLLVAL.SetBits(coarse << sam.SYSCTRL_DFLLVAL_COARSE_Pos)
sam.SYSCTRL.DFLLVAL.SetBits(0x1ff << sam.SYSCTRL_DFLLVAL_FINE_Pos)
// Write full configuration to DFLL control register
// SYSCTRL_DFLLMUL_CSTEP( 0x1f / 4 ) | // Coarse step is 31, half of the max value
// SYSCTRL_DFLLMUL_FSTEP( 10 ) |
// SYSCTRL_DFLLMUL_MUL( (48000) ) ;
sam.SYSCTRL.DFLLMUL.Set(((31 / 4) << sam.SYSCTRL_DFLLMUL_CSTEP_Pos) |
(10 << sam.SYSCTRL_DFLLMUL_FSTEP_Pos) |
(48000 << sam.SYSCTRL_DFLLMUL_MUL_Pos))
// disable DFLL
sam.SYSCTRL.DFLLCTRL.Set(0)
waitForSync()
sam.SYSCTRL.DFLLCTRL.SetBits(sam.SYSCTRL_DFLLCTRL_MODE |
sam.SYSCTRL_DFLLCTRL_CCDIS |
sam.SYSCTRL_DFLLCTRL_USBCRM |
sam.SYSCTRL_DFLLCTRL_BPLCKC)
// Wait for ready
for !sam.SYSCTRL.PCLKSR.HasBits(sam.SYSCTRL_PCLKSR_DFLLRDY) {
}
// Re-enable the DFLL
sam.SYSCTRL.DFLLCTRL.SetBits(sam.SYSCTRL_DFLLCTRL_ENABLE)
// Wait for ready
for !sam.SYSCTRL.PCLKSR.HasBits(sam.SYSCTRL_PCLKSR_DFLLRDY) {
}
// Switch Generic Clock Generator 0 to DFLL48M. CPU will run at 48MHz.
sam.GCLK.GENDIV.Set((0 << sam.GCLK_GENDIV_ID_Pos) |
(0 << sam.GCLK_GENDIV_DIV_Pos))
waitForSync()
sam.GCLK.GENCTRL.Set((0 << sam.GCLK_GENCTRL_ID_Pos) |
(sam.GCLK_GENCTRL_SRC_DFLL48M << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_IDC |
sam.GCLK_GENCTRL_GENEN)
waitForSync()
// Modify PRESCaler value of OSC8M to have 8MHz
sam.SYSCTRL.OSC8M.SetBits(sam.SYSCTRL_OSC8M_PRESC_0 << sam.SYSCTRL_OSC8M_PRESC_Pos)
sam.SYSCTRL.OSC8M.ClearBits(1 << sam.SYSCTRL_OSC8M_ONDEMAND_Pos)
// Wait for oscillator stabilization
for !sam.SYSCTRL.PCLKSR.HasBits(sam.SYSCTRL_PCLKSR_OSC8MRDY) {
}
// Use OSC8M as source for Generic Clock Generator 3
sam.GCLK.GENDIV.Set((3 << sam.GCLK_GENDIV_ID_Pos))
waitForSync()
sam.GCLK.GENCTRL.Set((3 << sam.GCLK_GENCTRL_ID_Pos) |
(sam.GCLK_GENCTRL_SRC_OSC8M << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_GENEN)
waitForSync()
// Use OSC32K as source for Generic Clock Generator 2
// OSC32K/1 -> GCLK2 at 32KHz
sam.GCLK.GENDIV.Set(2 << sam.GCLK_GENDIV_ID_Pos)
waitForSync()
sam.GCLK.GENCTRL.Set((2 << sam.GCLK_GENCTRL_ID_Pos) |
(sam.GCLK_GENCTRL_SRC_OSC32K << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_GENEN)
waitForSync()
// Use GCLK2 for RTC
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_RTC << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK2 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
waitForSync()
// Set the CPU, APBA, B, and C dividers
sam.PM.CPUSEL.Set(sam.PM_CPUSEL_CPUDIV_DIV1)
sam.PM.APBASEL.Set(sam.PM_APBASEL_APBADIV_DIV1)
sam.PM.APBBSEL.Set(sam.PM_APBBSEL_APBBDIV_DIV1)
sam.PM.APBCSEL.Set(sam.PM_APBCSEL_APBCDIV_DIV1)
// Disable automatic NVM write operations
sam.NVMCTRL.CTRLB.SetBits(sam.NVMCTRL_CTRLB_MANW)
}
func initRTC() {
// turn on digital interface clock
sam.PM.APBAMASK.SetBits(sam.PM_APBAMASK_RTC_)
// disable RTC
sam.RTC_MODE0.CTRL.Set(0)
waitForSync()
// reset RTC
sam.RTC_MODE0.CTRL.SetBits(sam.RTC_MODE0_CTRL_SWRST)
waitForSync()
// set Mode0 to 32-bit counter (mode 0) with prescaler 1 and GCLK2 is 32KHz/1
sam.RTC_MODE0.CTRL.Set((sam.RTC_MODE0_CTRL_MODE_COUNT32 << sam.RTC_MODE0_CTRL_MODE_Pos) |
(sam.RTC_MODE0_CTRL_PRESCALER_DIV1 << sam.RTC_MODE0_CTRL_PRESCALER_Pos))
waitForSync()
// re-enable RTC
sam.RTC_MODE0.CTRL.SetBits(sam.RTC_MODE0_CTRL_ENABLE)
waitForSync()
rtcInterrupt := interrupt.New(sam.IRQ_RTC, func(intr interrupt.Interrupt) {
flags := sam.RTC_MODE0.INTFLAG.Get()
if flags&sam.RTC_MODE0_INTENSET_CMP0 != 0 {
// The timer (for a sleep) has expired.
timerWakeup.Set(1)
}
if flags&sam.RTC_MODE0_INTENSET_OVF != 0 {
// The 32-bit RTC timer has overflowed.
rtcOverflows.Set(rtcOverflows.Get() + 1)
}
// Mark this interrupt has handled for CMP0 and OVF.
sam.RTC_MODE0.INTFLAG.Set(sam.RTC_MODE0_INTENSET_CMP0 | sam.RTC_MODE0_INTENSET_OVF)
})
sam.RTC_MODE0.INTENSET.Set(sam.RTC_MODE0_INTENSET_OVF)
rtcInterrupt.SetPriority(0xc0)
rtcInterrupt.Enable()
}
func waitForSync() {
for sam.GCLK.STATUS.HasBits(sam.GCLK_STATUS_SYNCBUSY) {
}
}
var rtcOverflows volatile.Register32 // number of times the RTC wrapped around
var timerWakeup volatile.Register8
// ticksToNanoseconds converts RTC ticks (at 32768Hz) to nanoseconds.
func ticksToNanoseconds(ticks timeUnit) int64 {
// The following calculation is actually the following, but with both sides
// reduced to reduce the risk of overflow:
// ticks * 1e9 / 32768
return int64(ticks) * 1953125 / 64
}
// nanosecondsToTicks converts nanoseconds to RTC ticks (running at 32768Hz).
func nanosecondsToTicks(ns int64) timeUnit {
// The following calculation is actually the following, but with both sides
// reduced to reduce the risk of overflow:
// ns * 32768 / 1e9
return timeUnit(ns * 64 / 1953125)
}
// sleepTicks should sleep for d number of microseconds.
func sleepTicks(d timeUnit) {
for d != 0 {
ticks := uint32(d)
if !timerSleep(ticks) {
// Bail out early to handle a non-time interrupt.
return
}
d -= timeUnit(ticks)
}
}
// ticks returns the elapsed time since reset.
func ticks() timeUnit {
// For some ways of capturing the time atomically, see this thread:
// https://www.eevblog.com/forum/microcontrollers/correct-timing-by-timer-overflow-count/msg749617/#msg749617
// Here, instead of re-reading the counter register if an overflow has been
// detected, we simply try again because that results in smaller code.
for {
mask := interrupt.Disable()
counter := readRTC()
overflows := rtcOverflows.Get()
hasOverflow := sam.RTC_MODE0.INTFLAG.Get()&sam.RTC_MODE0_INTENSET_OVF != 0
interrupt.Restore(mask)
if hasOverflow {
// There was an overflow while trying to capture the timer.
// Try again.
continue
}
// This is a 32-bit timer, so the number of timer overflows forms the
// upper 32 bits of this timer.
return timeUnit(overflows)<<32 + timeUnit(counter)
}
}
func readRTC() uint32 {
// request read of count
sam.RTC_MODE0.READREQ.Set(sam.RTC_MODE0_READREQ_RREQ)
waitForSync()
return sam.RTC_MODE0.COUNT.Get()
}
// ticks are in microseconds
// Returns true if the timer completed.
// Returns false if another interrupt occurred which requires an early return to scheduler.
func timerSleep(ticks uint32) bool {
timerWakeup.Set(0)
if ticks < 7 {
// Due to around 6 clock ticks delay waiting for the register value to
// sync, the minimum sleep value for the SAMD21 is 214us.
// For related info, see:
// https://community.atmel.com/comment/2507091#comment-2507091
ticks = 7
}
// request read of count
sam.RTC_MODE0.READREQ.Set(sam.RTC_MODE0_READREQ_RREQ)
waitForSync()
// set compare value
cnt := sam.RTC_MODE0.COUNT.Get()
sam.RTC_MODE0.COMP0.Set(uint32(cnt) + ticks)
waitForSync()
// enable IRQ for CMP0 compare
sam.RTC_MODE0.INTENSET.Set(sam.RTC_MODE0_INTENSET_CMP0)
wait:
waitForEvents()
if timerWakeup.Get() != 0 {
return true
}
if hasScheduler {
// The interurpt may have awoken a goroutine, so bail out early.
// Disable IRQ for CMP0 compare.
sam.RTC_MODE0.INTENCLR.Set(sam.RTC_MODE0_INTENSET_CMP0)
return false
} else {
// This is running without a scheduler.
// The application expects this to sleep the whole time.
goto wait
}
}
func initUSBClock() {
// Turn on clock for USB
sam.PM.APBBMASK.SetBits(sam.PM_APBBMASK_USB_)
// Put Generic Clock Generator 0 as source for Generic Clock Multiplexer 6 (USB reference)
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_USB << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
waitForSync()
}
func initADCClock() {
// Turn on clock for ADC
sam.PM.APBCMASK.SetBits(sam.PM_APBCMASK_ADC_)
// Put Generic Clock Generator 0 as source for Generic Clock Multiplexer for ADC.
sam.GCLK.CLKCTRL.Set((sam.GCLK_CLKCTRL_ID_ADC << sam.GCLK_CLKCTRL_ID_Pos) |
(sam.GCLK_CLKCTRL_GEN_GCLK0 << sam.GCLK_CLKCTRL_GEN_Pos) |
sam.GCLK_CLKCTRL_CLKEN)
waitForSync()
}
func waitForEvents() {
arm.Asm("wfe")
}
|