1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
//go:build (sam && atsamd51) || (sam && atsame5x)
// +build sam,atsamd51 sam,atsame5x
package runtime
import (
"device/arm"
"device/sam"
"machine"
"runtime/interrupt"
"runtime/volatile"
)
type timeUnit int64
//export Reset_Handler
func main() {
arm.SCB.CPACR.Set(0) // disable FPU if it is enabled
preinit()
run()
exit(0)
}
func init() {
initClocks()
initRTC()
initSERCOMClocks()
initUSBClock()
initADCClock()
// connect to USB CDC interface
machine.Serial.Configure(machine.UARTConfig{})
if !machine.USB.Configured() {
machine.USB.Configure(machine.UARTConfig{})
}
}
func putchar(c byte) {
machine.Serial.WriteByte(c)
}
func getchar() byte {
for machine.Serial.Buffered() == 0 {
Gosched()
}
v, _ := machine.Serial.ReadByte()
return v
}
func buffered() int {
return machine.Serial.Buffered()
}
func initClocks() {
// set flash wait state
sam.NVMCTRL.CTRLA.SetBits(0 << sam.NVMCTRL_CTRLA_RWS_Pos)
// software reset
sam.GCLK.CTRLA.SetBits(sam.GCLK_CTRLA_SWRST)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_SWRST) {
}
// Set OSCULP32K as source of Generic Clock Generator 3
// GCLK->GENCTRL[GENERIC_CLOCK_GENERATOR_XOSC32K].reg = GCLK_GENCTRL_SRC(GCLK_GENCTRL_SRC_OSCULP32K) | GCLK_GENCTRL_GENEN; //generic clock gen 3
sam.GCLK.GENCTRL[3].Set((sam.GCLK_GENCTRL_SRC_OSCULP32K << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_GENEN)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL_GCLK3) {
}
// Set OSCULP32K as source of Generic Clock Generator 0
sam.GCLK.GENCTRL[0].Set((sam.GCLK_GENCTRL_SRC_OSCULP32K << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_GENEN)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL_GCLK0) {
}
// Enable DFLL48M clock
sam.OSCCTRL.DFLLCTRLA.Set(0)
sam.OSCCTRL.DFLLMUL.Set((0x1 << sam.OSCCTRL_DFLLMUL_CSTEP_Pos) |
(0x1 << sam.OSCCTRL_DFLLMUL_FSTEP_Pos) |
(0x0 << sam.OSCCTRL_DFLLMUL_MUL_Pos))
for sam.OSCCTRL.DFLLSYNC.HasBits(sam.OSCCTRL_DFLLSYNC_DFLLMUL) {
}
sam.OSCCTRL.DFLLCTRLB.Set(0)
for sam.OSCCTRL.DFLLSYNC.HasBits(sam.OSCCTRL_DFLLSYNC_DFLLCTRLB) {
}
sam.OSCCTRL.DFLLCTRLA.SetBits(sam.OSCCTRL_DFLLCTRLA_ENABLE)
for sam.OSCCTRL.DFLLSYNC.HasBits(sam.OSCCTRL_DFLLSYNC_ENABLE) {
}
sam.OSCCTRL.DFLLVAL.Set(sam.OSCCTRL.DFLLVAL.Get())
for sam.OSCCTRL.DFLLSYNC.HasBits(sam.OSCCTRL_DFLLSYNC_DFLLVAL) {
}
sam.OSCCTRL.DFLLCTRLB.Set(sam.OSCCTRL_DFLLCTRLB_WAITLOCK |
sam.OSCCTRL_DFLLCTRLB_CCDIS |
sam.OSCCTRL_DFLLCTRLB_USBCRM)
for !sam.OSCCTRL.STATUS.HasBits(sam.OSCCTRL_STATUS_DFLLRDY) {
}
// set GCLK7 to run at 2MHz, using DFLL48M as clock source
// GCLK7 = 48MHz / 24 = 2MHz
sam.GCLK.GENCTRL[7].Set((sam.GCLK_GENCTRL_SRC_DFLL << sam.GCLK_GENCTRL_SRC_Pos) |
(24 << sam.GCLK_GENCTRL_DIV_Pos) |
sam.GCLK_GENCTRL_GENEN)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL_GCLK7) {
}
// Set up the PLLs
// Set PLL0 to run at 120MHz, using GCLK7 as clock source
sam.GCLK.PCHCTRL[1].Set(sam.GCLK_PCHCTRL_CHEN |
(sam.GCLK_PCHCTRL_GEN_GCLK7 << sam.GCLK_PCHCTRL_GEN_Pos))
// multiplier = 59 + 1 + (0/32) = 60
// PLL0 = 2MHz * 60 = 120MHz
sam.OSCCTRL.DPLL[0].DPLLRATIO.Set((0x0 << sam.OSCCTRL_DPLL_DPLLRATIO_LDRFRAC_Pos) |
(59 << sam.OSCCTRL_DPLL_DPLLRATIO_LDR_Pos))
for sam.OSCCTRL.DPLL[0].DPLLSYNCBUSY.HasBits(sam.OSCCTRL_DPLL_DPLLSYNCBUSY_DPLLRATIO) {
}
// MUST USE LBYPASS DUE TO BUG IN REV A OF SAMD51, via Adafruit lib.
sam.OSCCTRL.DPLL[0].DPLLCTRLB.Set((sam.OSCCTRL_DPLL_DPLLCTRLB_REFCLK_GCLK << sam.OSCCTRL_DPLL_DPLLCTRLB_REFCLK_Pos) |
sam.OSCCTRL_DPLL_DPLLCTRLB_LBYPASS)
sam.OSCCTRL.DPLL[0].DPLLCTRLA.Set(sam.OSCCTRL_DPLL_DPLLCTRLA_ENABLE)
for !sam.OSCCTRL.DPLL[0].DPLLSTATUS.HasBits(sam.OSCCTRL_DPLL_DPLLSTATUS_CLKRDY) ||
!sam.OSCCTRL.DPLL[0].DPLLSTATUS.HasBits(sam.OSCCTRL_DPLL_DPLLSTATUS_LOCK) {
}
// Set PLL1 to run at 100MHz, using GCLK7 as clock source
sam.GCLK.PCHCTRL[2].Set(sam.GCLK_PCHCTRL_CHEN |
(sam.GCLK_PCHCTRL_GEN_GCLK7 << sam.GCLK_PCHCTRL_GEN_Pos))
// multiplier = 49 + 1 + (0/32) = 50
// PLL1 = 2MHz * 50 = 100MHz
sam.OSCCTRL.DPLL[1].DPLLRATIO.Set((0x0 << sam.OSCCTRL_DPLL_DPLLRATIO_LDRFRAC_Pos) |
(49 << sam.OSCCTRL_DPLL_DPLLRATIO_LDR_Pos))
for sam.OSCCTRL.DPLL[1].DPLLSYNCBUSY.HasBits(sam.OSCCTRL_DPLL_DPLLSYNCBUSY_DPLLRATIO) {
}
// // MUST USE LBYPASS DUE TO BUG IN REV A OF SAMD51
sam.OSCCTRL.DPLL[1].DPLLCTRLB.Set((sam.OSCCTRL_DPLL_DPLLCTRLB_REFCLK_GCLK << sam.OSCCTRL_DPLL_DPLLCTRLB_REFCLK_Pos) |
sam.OSCCTRL_DPLL_DPLLCTRLB_LBYPASS)
sam.OSCCTRL.DPLL[1].DPLLCTRLA.Set(sam.OSCCTRL_DPLL_DPLLCTRLA_ENABLE)
// for !sam.OSCCTRL.DPLLSTATUS1.HasBits(sam.OSCCTRL_DPLLSTATUS_CLKRDY) ||
// !sam.OSCCTRL.DPLLSTATUS1.HasBits(sam.OSCCTRL_DPLLSTATUS_LOCK) {
// }
// Set up the peripheral clocks
// Set 48MHZ CLOCK FOR USB
sam.GCLK.GENCTRL[1].Set((sam.GCLK_GENCTRL_SRC_DFLL << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_IDC |
sam.GCLK_GENCTRL_GENEN)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL_GCLK1) {
}
// // Set 100MHZ CLOCK FOR OTHER PERIPHERALS
// sam.GCLK.GENCTRL2.Set((sam.GCLK_GENCTRL_SRC_DPLL1 << sam.GCLK_GENCTRL_SRC_Pos) |
// sam.GCLK_GENCTRL_IDC |
// sam.GCLK_GENCTRL_GENEN)
// for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL2) {
// }
// // Set 12MHZ CLOCK FOR DAC
sam.GCLK.GENCTRL[4].Set((sam.GCLK_GENCTRL_SRC_DFLL << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_IDC |
(4 << sam.GCLK_GENCTRL_DIVSEL_Pos) |
sam.GCLK_GENCTRL_GENEN)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL_GCLK4) {
}
// // Set up main clock
sam.GCLK.GENCTRL[0].Set((sam.GCLK_GENCTRL_SRC_DPLL0 << sam.GCLK_GENCTRL_SRC_Pos) |
sam.GCLK_GENCTRL_IDC |
sam.GCLK_GENCTRL_GENEN)
for sam.GCLK.SYNCBUSY.HasBits(sam.GCLK_SYNCBUSY_GENCTRL_GCLK0) {
}
sam.MCLK.CPUDIV.Set(sam.MCLK_CPUDIV_DIV_DIV1)
// Use the LDO regulator by default
sam.SUPC.VREG.ClearBits(sam.SUPC_VREG_SEL)
// Start up the "Debug Watchpoint and Trace" unit, so that we can use
// it's 32bit cycle counter for timing.
//CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
//DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
}
func initRTC() {
// turn on digital interface clock
sam.MCLK.APBAMASK.SetBits(sam.MCLK_APBAMASK_RTC_)
// disable RTC
sam.RTC_MODE0.CTRLA.ClearBits(sam.RTC_MODE0_CTRLA_ENABLE)
//sam.RTC_MODE0.CTRLA.Set(0)
for sam.RTC_MODE0.SYNCBUSY.HasBits(sam.RTC_MODE0_SYNCBUSY_ENABLE) {
}
// reset RTC
sam.RTC_MODE0.CTRLA.SetBits(sam.RTC_MODE0_CTRLA_SWRST)
for sam.RTC_MODE0.SYNCBUSY.HasBits(sam.RTC_MODE0_SYNCBUSY_SWRST) {
}
// set to use ulp 32k oscillator
sam.OSC32KCTRL.OSCULP32K.SetBits(sam.OSC32KCTRL_OSCULP32K_EN32K)
sam.OSC32KCTRL.RTCCTRL.Set(sam.OSC32KCTRL_RTCCTRL_RTCSEL_ULP32K)
// set Mode0 to 32-bit counter (mode 0) with prescaler 1 and GCLK2 is 32KHz/1
sam.RTC_MODE0.CTRLA.Set((sam.RTC_MODE0_CTRLA_MODE_COUNT32 << sam.RTC_MODE0_CTRLA_MODE_Pos) |
(sam.RTC_MODE0_CTRLA_PRESCALER_DIV1 << sam.RTC_MODE0_CTRLA_PRESCALER_Pos) |
(sam.RTC_MODE0_CTRLA_COUNTSYNC))
// re-enable RTC
sam.RTC_MODE0.CTRLA.SetBits(sam.RTC_MODE0_CTRLA_ENABLE)
for sam.RTC_MODE0.SYNCBUSY.HasBits(sam.RTC_MODE0_SYNCBUSY_ENABLE) {
}
irq := interrupt.New(sam.IRQ_RTC, func(interrupt.Interrupt) {
flags := sam.RTC_MODE0.INTFLAG.Get()
if flags&sam.RTC_MODE0_INTENSET_CMP0 != 0 {
// The timer (for a sleep) has expired.
timerWakeup.Set(1)
}
if flags&sam.RTC_MODE0_INTENSET_OVF != 0 {
// The 32-bit RTC timer has overflowed.
rtcOverflows.Set(rtcOverflows.Get() + 1)
}
// Mark this interrupt has handled for CMP0 and OVF.
sam.RTC_MODE0.INTFLAG.Set(sam.RTC_MODE0_INTENSET_CMP0 | sam.RTC_MODE0_INTENSET_OVF)
})
sam.RTC_MODE0.INTENSET.Set(sam.RTC_MODE0_INTENSET_OVF)
irq.SetPriority(0xc0)
irq.Enable()
}
func waitForSync() {
for sam.RTC_MODE0.SYNCBUSY.HasBits(sam.RTC_MODE0_SYNCBUSY_COUNT) {
}
}
var rtcOverflows volatile.Register32 // number of times the RTC wrapped around
var timerWakeup volatile.Register8
// ticksToNanoseconds converts RTC ticks (at 32768Hz) to nanoseconds.
func ticksToNanoseconds(ticks timeUnit) int64 {
// The following calculation is actually the following, but with both sides
// reduced to reduce the risk of overflow:
// ticks * 1e9 / 32768
return int64(ticks) * 1953125 / 64
}
// nanosecondsToTicks converts nanoseconds to RTC ticks (running at 32768Hz).
func nanosecondsToTicks(ns int64) timeUnit {
// The following calculation is actually the following, but with both sides
// reduced to reduce the risk of overflow:
// ns * 32768 / 1e9
return timeUnit(ns * 64 / 1953125)
}
// sleepTicks should sleep for d number of microseconds.
func sleepTicks(d timeUnit) {
for d != 0 {
ticks := uint32(d)
if !timerSleep(ticks) {
return
}
d -= timeUnit(ticks)
}
}
// ticks returns the elapsed time since reset.
func ticks() timeUnit {
// For some ways of capturing the time atomically, see this thread:
// https://www.eevblog.com/forum/microcontrollers/correct-timing-by-timer-overflow-count/msg749617/#msg749617
// Here, instead of re-reading the counter register if an overflow has been
// detected, we simply try again because that results in smaller code.
for {
mask := interrupt.Disable()
counter := readRTC()
overflows := rtcOverflows.Get()
hasOverflow := sam.RTC_MODE0.INTFLAG.Get()&sam.RTC_MODE0_INTENSET_OVF != 0
interrupt.Restore(mask)
if hasOverflow {
// There was an overflow while trying to capture the timer.
// Try again.
continue
}
// This is a 32-bit timer, so the number of timer overflows forms the
// upper 32 bits of this timer.
return timeUnit(overflows)<<32 + timeUnit(counter)
}
}
func readRTC() uint32 {
waitForSync()
return sam.RTC_MODE0.COUNT.Get()
}
// ticks are in microseconds
// Returns true if the timer completed.
// Returns false if another interrupt occured which requires an early return to scheduler.
func timerSleep(ticks uint32) bool {
timerWakeup.Set(0)
if ticks < 8 {
// due to delay waiting for the register value to sync, the minimum sleep value
// for the SAMD51 is 260us.
// For related info for SAMD21, see:
// https://community.atmel.com/comment/2507091#comment-2507091
ticks = 8
}
// request read of count
waitForSync()
// set compare value
cnt := sam.RTC_MODE0.COUNT.Get()
sam.RTC_MODE0.COMP[0].Set(uint32(cnt) + ticks)
// enable IRQ for CMP0 compare
sam.RTC_MODE0.INTENSET.Set(sam.RTC_MODE0_INTENSET_CMP0)
wait:
waitForEvents()
if timerWakeup.Get() != 0 {
return true
}
if hasScheduler {
// The interurpt may have awoken a goroutine, so bail out early.
// Disable IRQ for CMP0 compare.
sam.RTC_MODE0.INTENCLR.Set(sam.RTC_MODE0_INTENSET_CMP0)
return false
} else {
// This is running without a scheduler.
// The application expects this to sleep the whole time.
goto wait
}
}
func initUSBClock() {
// Turn on clock(s) for USB
//MCLK->APBBMASK.reg |= MCLK_APBBMASK_USB;
//MCLK->AHBMASK.reg |= MCLK_AHBMASK_USB;
sam.MCLK.APBBMASK.SetBits(sam.MCLK_APBBMASK_USB_)
sam.MCLK.AHBMASK.SetBits(sam.MCLK_AHBMASK_USB_)
// Put Generic Clock Generator 1 as source for USB
//GCLK->PCHCTRL[USB_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK1_Val | (1 << GCLK_PCHCTRL_CHEN_Pos);
sam.GCLK.PCHCTRL[sam.PCHCTRL_GCLK_USB].Set((sam.GCLK_PCHCTRL_GEN_GCLK1 << sam.GCLK_PCHCTRL_GEN_Pos) |
sam.GCLK_PCHCTRL_CHEN)
}
func initADCClock() {
// Turn on clocks for ADC0/ADC1.
sam.MCLK.APBDMASK.SetBits(sam.MCLK_APBDMASK_ADC0_)
sam.MCLK.APBDMASK.SetBits(sam.MCLK_APBDMASK_ADC1_)
// Put Generic Clock Generator 1 as source for ADC0 and ADC1.
sam.GCLK.PCHCTRL[sam.PCHCTRL_GCLK_ADC0].Set((sam.GCLK_PCHCTRL_GEN_GCLK1 << sam.GCLK_PCHCTRL_GEN_Pos) |
sam.GCLK_PCHCTRL_CHEN)
sam.GCLK.PCHCTRL[sam.PCHCTRL_GCLK_ADC1].Set((sam.GCLK_PCHCTRL_GEN_GCLK1 << sam.GCLK_PCHCTRL_GEN_Pos) |
sam.GCLK_PCHCTRL_CHEN)
}
func waitForEvents() {
arm.Asm("wfe")
}
|