1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
/* Linker script for the ESP32-C3
*
* The ESP32-C3 has a rather funky memory layout, more like its Xtensa
* predecessors than like other RISC-V chips:
* - It has 384kB of regular RAM. This RAM can be used both as data RAM and
* instruction RAM, but needs to be accessed via a different address space
* (DRAM/IRAM).
* - It has another 16kB of RAM, that could be used as regular RAM but is
* normally used by the flash cache.
* - It has 8MB of address space for the DROM and IROM, but for some reason
* this address space is shared. So it isn't possible to map all DROM at
* 0x3C000000 and all DRAM at 0x42000000: they would overlap.
* - The MMU works in pages of 64kB, which means the bottom 16 bits of the
* address in flash and the address in DROM/IROM need to match.
* - Memory in DRAM and IRAM is loaded at reset by the ROM bootloader.
* Luckily, this doesn't have significant alignment requirements.
*
* This linker script has been written to carefully work around (or with) these
* limitations:
* - It adds dummy sections so that the bottom 16 bits of the virtual address
* and the physical address (in the generated firmware image) match.
* - It also offsets sections that share an address space using those same
* dummy sections.
* - It sorts the sections by load address, to avoid surprises as esptool.py
* also does it.
* This way, it's possible to create a very small firmware image that still
* conforms to the expectations of esptool.py and the ROM bootloader.
*/
MEMORY
{
/* Note: DRAM and IRAM below are actually in the same 384K address space. */
DRAM (rw) : ORIGIN = 0x3FC80000, LENGTH = 384K /* Internal SRAM 1 (data bus) */
IRAM (x) : ORIGIN = 0x40380000, LENGTH = 384K /* Internal SRAM 1 (instruction bus) */
/* Note: DROM and IROM below are actually in the same 8M address space. */
DROM (r) : ORIGIN = 0x3C000000, LENGTH = 8M /* Data bus (read-only) */
IROM (rx) : ORIGIN = 0x42000000, LENGTH = 8M /* Instruction bus */
}
/* The entry point. It is set in the image flashed to the chip, so must be
* defined.
*/
ENTRY(call_start_cpu0)
SECTIONS
{
/* Dummy section to make sure the .rodata section starts exactly behind the
* image header.
*/
.rodata_dummy (NOLOAD): ALIGN(4)
{
. += 0x18; /* image header at start of flash: esp_image_header_t */
. += 0x8; /* DROM segment header (8 bytes) */
} > DROM
/* Constant global variables, stored in DROM.
*/
.rodata : ALIGN(4)
{
*(.rodata .rodata.*)
. = ALIGN (4);
} >DROM
/* Put the stack at the bottom of DRAM, so that the application will
* crash on stack overflow instead of silently corrupting memory.
* See: http://blog.japaric.io/stack-overflow-protection/
* TODO: this might not actually work because memory protection hasn't been set up.
*/
.stack (NOLOAD) :
{
. = ALIGN(16);
. += _stack_size;
_stack_top = .;
} >DRAM
/* Global variables that are mutable and zero-initialized.
* These must be zeroed at startup (unlike data, which is loaded by the
* bootloader).
*/
.bss (NOLOAD) : ALIGN(4)
{
. = ALIGN (4);
_sbss = ABSOLUTE(.);
*(.sbss)
*(.bss .bss.*)
. = ALIGN (4);
_ebss = ABSOLUTE(.);
} >DRAM
/* Mutable global variables. This data (in the DRAM segment) is initialized
* by the ROM bootloader.
*/
.data : ALIGN(4)
{
. = ALIGN (4);
_sdata = ABSOLUTE(.);
*(.sdata)
*(.data .data.*)
. = ALIGN (4);
_edata = ABSOLUTE(.);
} >DRAM
/* Dummy section to make sure the .init section (in the IRAM segment) is just
* behind the DRAM segment. For IRAM and DRAM, we luckily don't have to
* worry about 64kB pages or image headers as they're loaded in RAM by the
* bootloader (not mapped from flash).
*/
.iram_dummy (NOLOAD): ALIGN(4)
{
. += SIZEOF(.stack);
. += SIZEOF(.bss);
. += SIZEOF(.data);
} > IRAM
/* Initialization code is loaded into IRAM. This memory area is also used by
* the heap, so no RAM is wasted.
*/
.init : ALIGN(4)
{
*(.init)
} >IRAM
/* Dummy section to put the IROM segment exactly behind the IRAM segment.
* This has to follow the app image format exactly.
*/
.text_dummy (NOLOAD): ALIGN(4)
{
/* Note: DRAM and DROM are not always present so the header should only
* be inserted if it actually exists.
*/
. += 0x18; /* esp_image_header_t */
. += SIZEOF(.rodata) + ((SIZEOF(.rodata) != 0) ? 0x8 : 0); /* DROM segment (optional) */
. += SIZEOF(.data) + ((SIZEOF(.data) != 0) ? 0x8 : 0); /* DRAM segment (optional) */
. += SIZEOF(.init) + 0x8; /* IRAM segment */
. += 0x8; /* IROM segment header */
} > IROM
/* IROM segment. This contains all the actual code and is placed right after
* the DROM segment.
*/
.text : ALIGN(4)
{
. = ALIGN (256);
*(.text.exception_vectors)
. = ALIGN (4);
*(.text .text.*)
} >IROM
/DISCARD/ :
{
*(.eh_frame) /* causes 'no memory region specified' error in lld */
}
/* Check that the boot ROM stack (for the APP CPU) does not overlap with the
* data that is loaded by the boot ROM. This is unlikely to happen in
* practice.
* The magic value comes from here:
* https://github.com/espressif/esp-idf/blob/61299f879e/components/bootloader/subproject/main/ld/esp32c3/bootloader.ld#L191
*/
ASSERT((_edata + SIZEOF(.init)) < 0x3FCDE710, "the .init section overlaps with the stack used by the boot ROM, possibly causing corruption at startup")
}
/* For the garbage collector.
* Note that _heap_start starts after _edata (without caring for the .init
* section), because the .init section isn't necessary anymore after startup and
* can thus be overwritten by the heap.
*/
_globals_start = _sbss;
_globals_end = _edata;
_heap_start = _edata;
_heap_end = ORIGIN(DRAM) + LENGTH(DRAM);
_stack_size = 4K;
/* ROM functions used for setting up the flash mapping.
*/
Cache_Invalidate_ICache_All = 0x400004d8;
Cache_Suspend_ICache = 0x40000524;
Cache_Resume_ICache = 0x40000528;
Cache_MMU_Init = 0x4000055c;
Cache_Dbus_MMU_Set = 0x40000564;
/* From ESP-IDF:
* components/esp_rom/esp32c3/ld/esp32c3.rom.libgcc.ld
* These are called from LLVM during codegen. The original license is Apache
* 2.0.
*/
__absvdi2 = 0x40000764;
__absvsi2 = 0x40000768;
__adddf3 = 0x4000076c;
__addsf3 = 0x40000770;
__addvdi3 = 0x40000774;
__addvsi3 = 0x40000778;
__ashldi3 = 0x4000077c;
__ashrdi3 = 0x40000780;
__bswapdi2 = 0x40000784;
__bswapsi2 = 0x40000788;
__clear_cache = 0x4000078c;
__clrsbdi2 = 0x40000790;
__clrsbsi2 = 0x40000794;
__clzdi2 = 0x40000798;
__clzsi2 = 0x4000079c;
__cmpdi2 = 0x400007a0;
__ctzdi2 = 0x400007a4;
__ctzsi2 = 0x400007a8;
__divdc3 = 0x400007ac;
__divdf3 = 0x400007b0;
__divdi3 = 0x400007b4;
__divsc3 = 0x400007b8;
__divsf3 = 0x400007bc;
__divsi3 = 0x400007c0;
__eqdf2 = 0x400007c4;
__eqsf2 = 0x400007c8;
__extendsfdf2 = 0x400007cc;
__ffsdi2 = 0x400007d0;
__ffssi2 = 0x400007d4;
__fixdfdi = 0x400007d8;
__fixdfsi = 0x400007dc;
__fixsfdi = 0x400007e0;
__fixsfsi = 0x400007e4;
__fixunsdfsi = 0x400007e8;
__fixunssfdi = 0x400007ec;
__fixunssfsi = 0x400007f0;
__floatdidf = 0x400007f4;
__floatdisf = 0x400007f8;
__floatsidf = 0x400007fc;
__floatsisf = 0x40000800;
__floatundidf = 0x40000804;
__floatundisf = 0x40000808;
__floatunsidf = 0x4000080c;
__floatunsisf = 0x40000810;
__gcc_bcmp = 0x40000814;
__gedf2 = 0x40000818;
__gesf2 = 0x4000081c;
__gtdf2 = 0x40000820;
__gtsf2 = 0x40000824;
__ledf2 = 0x40000828;
__lesf2 = 0x4000082c;
__lshrdi3 = 0x40000830;
__ltdf2 = 0x40000834;
__ltsf2 = 0x40000838;
__moddi3 = 0x4000083c;
__modsi3 = 0x40000840;
__muldc3 = 0x40000844;
__muldf3 = 0x40000848;
__muldi3 = 0x4000084c;
__mulsc3 = 0x40000850;
__mulsf3 = 0x40000854;
__mulsi3 = 0x40000858;
__mulvdi3 = 0x4000085c;
__mulvsi3 = 0x40000860;
__nedf2 = 0x40000864;
__negdf2 = 0x40000868;
__negdi2 = 0x4000086c;
__negsf2 = 0x40000870;
__negvdi2 = 0x40000874;
__negvsi2 = 0x40000878;
__nesf2 = 0x4000087c;
__paritysi2 = 0x40000880;
__popcountdi2 = 0x40000884;
__popcountsi2 = 0x40000888;
__powidf2 = 0x4000088c;
__powisf2 = 0x40000890;
__subdf3 = 0x40000894;
__subsf3 = 0x40000898;
__subvdi3 = 0x4000089c;
__subvsi3 = 0x400008a0;
__truncdfsf2 = 0x400008a4;
__ucmpdi2 = 0x400008a8;
__udivdi3 = 0x400008ac;
__udivmoddi4 = 0x400008b0;
__udivsi3 = 0x400008b4;
__udiv_w_sdiv = 0x400008b8;
__umoddi3 = 0x400008bc;
__umodsi3 = 0x400008c0;
__unorddf2 = 0x400008c4;
__unordsf2 = 0x400008c8;
/* From ESP-IDF:
* components/esp_rom/esp32c3/ld/esp32c3.rom.newlib.ld
* These are called during codegen and thus it's a good idea to make them always
* available. ROM functions may also be faster than functions in IROM (that go
* through the flash cache) and are always available in interrupts.
*/
memset = 0x40000354;
memcpy = 0x40000358;
memmove = 0x4000035c;
|