1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
use comgr::{sys::amd_comgr_status_t, Comgr};
use cuda_types::*;
use hip_runtime_sys::*;
use memoffset::offset_of;
use static_assertions::assert_impl_one;
use std::{
cell::Cell,
ffi::{c_void, CStr},
fs,
mem::{self, ManuallyDrop, MaybeUninit},
ptr::{self, NonNull},
sync::{atomic::AtomicI32, Once},
};
use self::cache::KernelCache;
pub(crate) mod array;
pub(crate) mod cache;
pub(crate) mod context;
pub(crate) mod dark_api;
pub(crate) mod device;
pub(crate) mod function;
pub(crate) mod gl;
pub(crate) mod graph;
pub(crate) mod hipfix;
pub(crate) mod library;
pub(crate) mod link;
pub(crate) mod memory;
pub(crate) mod module;
#[cfg_attr(windows, path = "os_win.rs")]
#[cfg_attr(not(windows), path = "os_unix.rs")]
pub(crate) mod os;
pub(crate) mod pointer;
pub(crate) mod stream;
pub(crate) mod surface;
pub(crate) mod surfref;
pub(crate) mod texobj;
pub(crate) mod texref;
#[cfg(debug_assertions)]
pub(crate) fn unimplemented() -> cuda_types::CUresult {
unimplemented!()
}
#[cfg(not(debug_assertions))]
pub(crate) fn unimplemented() -> cuda_types::CUresult {
cuda_types::CUresult::CUDA_ERROR_NOT_SUPPORTED
}
#[macro_export]
macro_rules! hip_call {
($expr:expr) => {
#[allow(unused_unsafe)]
{
let err = unsafe { $expr };
if err != hip_runtime_sys::hipError_t::hipSuccess {
return Result::Err(err);
}
}
};
}
#[macro_export]
macro_rules! hip_call_cuda {
($expr:expr) => {
#[allow(unused_unsafe)]
{
use crate::r#impl::IntoCuda;
let err = unsafe { $expr };
if err != hip_runtime_sys::hipError_t::hipSuccess {
return Result::Err(err.into_cuda());
}
}
};
}
static GLOBAL_STATE: Lazy<GlobalState> = Lazy::INIT;
pub(crate) struct GlobalState {
pub(crate) devices: Vec<device::Device>,
_dark_api_heap: *mut c_void,
pub(crate) kernel_cache: Option<KernelCache>,
pub(crate) comgr: Comgr,
pub(crate) comgr_version: String,
pub(crate) zero_buffers: bool,
}
assert_impl_one!(GlobalState: Sync);
impl GlobalState {
pub(crate) fn device(&self, device: hipDevice_t) -> Result<&device::Device, CUresult> {
if device < 0 || device as usize >= self.devices.len() {
Err(CUresult::CUDA_ERROR_INVALID_DEVICE)
} else {
Ok(&self.devices[device as usize])
}
}
}
unsafe impl Sync for GlobalState {}
pub(crate) trait ZludaObject: Sized {
const LIVENESS_COOKIE: usize;
const LIVENESS_FAIL: CUresult;
// This function exists to support "drop-with-return-value"
// By default Drop returns nothing, while we want to signal that e.g.
// cuCtxDestroy returned an error destroying underlying resources
// * by_owner patameter tells us if the drop comes from CUDA owner
// (typically context), in this cane we must skip deregistration
fn drop_with_result(&mut self, by_owner: bool) -> Result<(), CUresult>;
}
pub(crate) trait HasLivenessCookie: Sized {
const COOKIE: usize;
const LIVENESS_FAIL: CUresult;
fn try_drop(&mut self) -> Result<(), CUresult>;
}
// This struct is a best-effort check if wrapped value has been dropped,
// while it's inherently safe, its use coming from FFI is very unsafe
#[repr(C)]
pub(crate) struct LiveCheck<T: ZludaObject> {
cookie: usize,
data: ManuallyDrop<T>,
}
impl<T: ZludaObject> LiveCheck<T> {
pub fn new(data: T) -> Self {
LiveCheck {
cookie: T::LIVENESS_COOKIE,
data: ManuallyDrop::new(data),
}
}
pub unsafe fn drop_box_with_result(this: *mut Self, by_owner: bool) -> Result<(), CUresult> {
(&mut *this).try_drop(by_owner)?;
drop(Box::from_raw(this));
Ok(())
}
unsafe fn from_ref(this: &T) -> NonNull<Self> {
NonNull::new_unchecked(Self::from_raw(this as *const T as *mut T))
}
unsafe fn from_raw(this: *mut T) -> *mut Self {
let offset = offset_of!(Self, data);
let outer_ptr = (this as *mut u8).wrapping_sub(offset);
outer_ptr as *mut Self
}
pub unsafe fn as_mut_unchecked(&mut self) -> &mut T {
&mut self.data
}
pub unsafe fn as_result<'a>(this: *mut Self) -> Result<&'a T, CUresult> {
if this == ptr::null_mut() {
return Err(CUresult::CUDA_ERROR_INVALID_VALUE);
}
if (*this).cookie == T::LIVENESS_COOKIE {
Ok(&(*this).data)
} else {
Err(T::LIVENESS_FAIL)
}
}
#[must_use]
pub fn try_drop(&mut self, by_owner: bool) -> Result<(), CUresult> {
if self.cookie == T::LIVENESS_COOKIE {
self.cookie = 0;
self.data.drop_with_result(by_owner)?;
unsafe { ManuallyDrop::drop(&mut self.data) };
return Ok(());
}
Err(T::LIVENESS_FAIL)
}
}
impl<T: ZludaObject> Drop for LiveCheck<T> {
fn drop(&mut self) {
self.cookie = 0;
}
}
pub(crate) trait FromCuda<T: Sized>: Sized {
fn from_cuda(t: T) -> Self {
unsafe { mem::transmute_copy(&t) }
}
}
impl FromCuda<i8> for i8 {}
impl FromCuda<u8> for u8 {}
impl FromCuda<u16> for u16 {}
impl FromCuda<i32> for i32 {}
impl FromCuda<u32> for u32 {}
impl FromCuda<f32> for f32 {}
impl FromCuda<usize> for usize {}
impl FromCuda<u64> for u64 {}
impl FromCuda<CUuuid> for CUuuid {}
impl FromCuda<CUdevice_attribute> for CUdevice_attribute {}
impl FromCuda<CUdevprop> for CUdevprop {}
impl FromCuda<CUlimit> for CUlimit {}
impl FromCuda<CUfunc_cache> for CUfunc_cache {}
impl FromCuda<CUjit_option> for CUjit_option {}
impl FromCuda<CUfunction_attribute> for CUfunction_attribute {}
// Same layout, but if it's a an array resource it needs an adjustment in hipfix
impl FromCuda<CUDA_MEMCPY2D> for CUDA_MEMCPY2D {}
impl FromCuda<CUDA_MEMCPY3D> for CUDA_MEMCPY3D {}
impl FromCuda<CUDA_ARRAY3D_DESCRIPTOR> for CUDA_ARRAY3D_DESCRIPTOR {}
impl FromCuda<c_void> for c_void {}
impl FromCuda<CUarray> for CUarray {}
impl FromCuda<CUhostFn> for CUhostFn {}
impl FromCuda<CUoccupancyB2DSize> for CUoccupancyB2DSize {}
impl FromCuda<CUdriverProcAddressQueryResult_enum> for CUdriverProcAddressQueryResult_enum {}
impl FromCuda<CUmoduleLoadingMode> for CUmoduleLoadingMode {}
impl FromCuda<CUlibraryOption> for CUlibraryOption {}
impl FromCuda<CUDA_KERNEL_NODE_PARAMS_v1> for CUDA_KERNEL_NODE_PARAMS_v1 {}
impl FromCuda<CUjitInputType> for CUjitInputType {}
impl FromCuda<CUDA_RESOURCE_DESC> for CUDA_RESOURCE_DESC {}
impl FromCuda<CUcontext> for *mut context::Context {}
impl FromCuda<CUstream> for *mut stream::Stream {}
impl FromCuda<CUdevice> for hipDevice_t {}
impl FromCuda<CUdeviceptr> for hipDeviceptr_t {}
impl FromCuda<CUmodule> for *mut module::Module {}
impl FromCuda<CUlibrary> for *mut library::Library {}
impl FromCuda<CUfunction> for *mut function::Function {}
impl FromCuda<CUlinkState> for *mut link::LinkState {}
impl FromCuda<CUtexref> for *mut textureReference {}
impl FromCuda<CUsurfref> for *mut textureReference {}
impl FromCuda<CUevent> for hipEvent_t {}
impl FromCuda<CUtexObject> for hipTextureObject_t {}
impl FromCuda<CUmemoryPool> for hipMemPool_t {}
// values are compatible
impl FromCuda<CUstreamCaptureStatus> for hipStreamCaptureStatus {}
// values are compatible
impl FromCuda<CUmemPool_attribute> for hipMemPoolAttr {}
// values are compatible
impl FromCuda<CUpointer_attribute> for hipPointer_attribute {}
impl FromCuda<CUfunction_attribute> for hipFunction_attribute {}
impl FromCuda<CUfilter_mode> for hipTextureFilterMode {}
impl FromCuda<CUaddress_mode> for hipTextureAddressMode {}
impl FromCuda<CUarray_format> for hipArray_Format {}
impl FromCuda<CUDA_ARRAY_DESCRIPTOR> for HIP_ARRAY_DESCRIPTOR {}
impl FromCuda<CUDA_ARRAY3D_DESCRIPTOR> for HIP_ARRAY3D_DESCRIPTOR {}
// Same layout, but if it's a an array resource it needs an adjustment in hipfix
// impl FromCuda<CUDA_RESOURCE_DESC> for HIP_RESOURCE_DESC {}
impl FromCuda<CUDA_TEXTURE_DESC> for HIP_TEXTURE_DESC {}
impl FromCuda<CUDA_RESOURCE_VIEW_DESC> for HIP_RESOURCE_VIEW_DESC {}
impl FromCuda<CUfunc_cache> for hipFuncCache_t {}
impl FromCuda<CUgraph> for hipGraph_t {}
impl FromCuda<CUgraphNode> for hipGraphNode_t {}
impl FromCuda<CUgraphExec> for hipGraphExec_t {}
impl FromCuda<CUgraphicsResource> for hipGraphicsResource_t {}
impl FromCuda<CUlimit> for hipLimit_t {}
impl FromCuda<CUsurfObject> for hipSurfaceObject_t {}
impl<From, Into: FromCuda<From>> FromCuda<*mut From> for *mut Into {}
impl<From, Into: FromCuda<From>> FromCuda<*const From> for *const Into {}
pub(crate) fn memcpy2d_from_cuda(this: &CUDA_MEMCPY2D) -> hip_Memcpy2D {
hip_Memcpy2D {
srcXInBytes: this.srcXInBytes,
srcY: this.srcY,
srcMemoryType: memory_type_from_cuda(this.srcMemoryType),
srcHost: this.srcHost,
srcDevice: FromCuda::from_cuda(this.srcDevice),
srcArray: hipfix::array::get(this.srcArray),
srcPitch: this.srcPitch,
dstXInBytes: this.dstXInBytes,
dstY: this.dstY,
dstMemoryType: memory_type_from_cuda(this.dstMemoryType),
dstHost: this.dstHost,
dstDevice: FromCuda::from_cuda(this.dstDevice),
dstArray: hipfix::array::get(this.dstArray),
dstPitch: this.dstPitch,
WidthInBytes: this.WidthInBytes,
Height: this.Height,
}
}
#[macro_export]
macro_rules! try_downcast {
($expr:expr, $type_from:ty => $type_to:ty) => {{
{
let value = $expr;
if value <= (<$type_to>::MAX as $type_from) {
value as $type_to
} else {
return Err(CUresult::CUDA_ERROR_NOT_SUPPORTED);
}
}
}};
}
#[allow(non_snake_case)]
pub(crate) fn memcpy3d_from_cuda(this: &CUDA_MEMCPY3D) -> Result<HIP_MEMCPY3D, CUresult> {
// TODO: remove the casts when HIP fixes it
let srcXInBytes = try_downcast!(this.srcXInBytes, usize => u32);
let srcY = try_downcast!(this.srcY, usize => u32);
let srcZ = try_downcast!(this.srcZ, usize => u32);
let srcLOD = try_downcast!(this.srcLOD, usize => u32);
let srcPitch = try_downcast!(this.srcPitch, usize => u32);
let srcHeight = try_downcast!(this.srcHeight, usize => u32);
let dstXInBytes = try_downcast!(this.dstXInBytes, usize => u32);
let dstY = try_downcast!(this.dstY, usize => u32);
let dstZ = try_downcast!(this.dstZ, usize => u32);
let dstLOD = try_downcast!(this.dstLOD, usize => u32);
let dstPitch = try_downcast!(this.dstPitch, usize => u32);
let dstHeight = try_downcast!(this.dstHeight, usize => u32);
let WidthInBytes = try_downcast!(this.WidthInBytes, usize => u32);
let Height = try_downcast!(this.Height, usize => u32);
let Depth = try_downcast!(this.Depth, usize => u32);
Ok(HIP_MEMCPY3D {
srcXInBytes,
srcY,
srcZ,
srcLOD,
srcMemoryType: memory_type_from_cuda(this.srcMemoryType),
srcHost: this.srcHost,
srcDevice: FromCuda::from_cuda(this.srcDevice),
srcArray: hipfix::array::get(this.srcArray),
srcPitch,
srcHeight,
dstXInBytes,
dstY,
dstZ,
dstLOD,
dstMemoryType: memory_type_from_cuda(this.dstMemoryType),
dstHost: this.dstHost,
dstDevice: FromCuda::from_cuda(this.dstDevice),
dstArray: hipfix::array::get(this.dstArray),
dstPitch,
dstHeight,
WidthInBytes,
Height,
Depth,
})
}
pub(crate) fn memory_type_from_cuda(this: CUmemorytype) -> hipMemoryType {
match this {
CUmemorytype::CU_MEMORYTYPE_HOST => hipMemoryType::hipMemoryTypeHost,
CUmemorytype::CU_MEMORYTYPE_DEVICE => hipMemoryType::hipMemoryTypeDevice,
CUmemorytype::CU_MEMORYTYPE_ARRAY => hipMemoryType::hipMemoryTypeArray,
CUmemorytype::CU_MEMORYTYPE_UNIFIED => hipMemoryType::hipMemoryTypeUnified,
CUmemorytype(val) => hipMemoryType(val - 1),
}
}
impl FromCuda<CUresult> for hipError_t {
fn from_cuda(this: CUresult) -> hipError_t {
hipError_t(this.0)
}
}
pub(crate) trait IntoCuda {
fn into_cuda(self) -> CUresult;
}
impl IntoCuda for CUresult {
fn into_cuda(self) -> CUresult {
self
}
}
impl IntoCuda for () {
fn into_cuda(self) -> CUresult {
CUresult::CUDA_SUCCESS
}
}
pub(crate) fn comgr_error_to_cuda(this: amd_comgr_status_t) -> CUresult {
match this {
amd_comgr_status_t::AMD_COMGR_STATUS_ERROR_INVALID_ARGUMENT => {
CUresult::CUDA_ERROR_INVALID_VALUE
}
amd_comgr_status_t::AMD_COMGR_STATUS_ERROR_OUT_OF_RESOURCES => {
CUresult::CUDA_ERROR_OUT_OF_MEMORY
}
_ => CUresult::CUDA_ERROR_UNKNOWN,
}
}
impl<T1: IntoCuda, T2: IntoCuda> IntoCuda for Result<T1, T2> {
fn into_cuda(self) -> CUresult {
match self {
Ok(e) => e.into_cuda(),
Err(e) => e.into_cuda(),
}
}
}
impl IntoCuda for hipError_t {
fn into_cuda(self) -> CUresult {
if self.0 >= hipError_t::hipErrorUnknown.0 {
CUresult::CUDA_ERROR_UNKNOWN
} else {
CUresult(self.0 as i32)
}
}
}
fn fold_cuda_errors(iter: impl Iterator<Item = Result<(), CUresult>>) -> Result<(), CUresult> {
iter.fold(Ok(()), Result::and)
}
// very similar to lazy_static implementation, but more suitable to our use
struct Lazy<T: Sync> {
once: Once,
value: Cell<MaybeUninit<T>>,
}
unsafe impl<T: Sync> Sync for Lazy<T> {}
impl<T: Sync> Lazy<T> {
const INIT: Self = Lazy {
once: Once::new(),
value: Cell::new(MaybeUninit::uninit()),
};
fn init(&self, ctor: impl FnOnce() -> T) {
self.once.call_once(|| {
self.value.set(MaybeUninit::new(ctor()));
});
}
fn is_initalized(&self) -> bool {
self.once.is_completed()
}
fn get<'a>(&'a self) -> Result<&'a T, CUresult> {
if self.once.is_completed() {
Ok(unsafe { &*(&*self.value.as_ptr()).as_ptr() })
} else {
Err(CUresult::CUDA_ERROR_NOT_INITIALIZED)
}
}
}
pub(crate) fn init(flags: u32) -> Result<(), CUresult> {
if GLOBAL_STATE.is_initalized() {
return Ok(());
}
let comgr = Comgr::find_and_load().map_err(comgr_error_to_cuda)?;
let comgr_version = comgr.version().map_err(comgr_error_to_cuda)?;
hip_call_cuda!(hipInit(flags));
let mut dev_count = 0;
hip_call_cuda!(hipGetDeviceCount(&mut dev_count));
let devices = (0..dev_count as usize)
.map(|index| device::Device::new(index))
.collect::<Result<Vec<_>, _>>()?;
let global_heap = unsafe { os::heap_create() };
if global_heap == ptr::null_mut() {
return Err(CUresult::CUDA_ERROR_OUT_OF_MEMORY);
}
let kernel_cache = create_default_cache();
let zero_buffers = hipfix::should_zero_buffers().unwrap_or(false);
GLOBAL_STATE.init(|| GlobalState {
devices,
kernel_cache,
_dark_api_heap: global_heap,
comgr,
comgr_version,
zero_buffers,
});
Ok(())
}
fn create_default_cache() -> Option<KernelCache> {
let mut disk_cache_location = dirs::cache_dir()?;
disk_cache_location.push("ZLUDA");
disk_cache_location.push("ComputeCache");
fs::create_dir_all(&disk_cache_location).ok()?;
KernelCache::new(&disk_cache_location)
}
pub(crate) static MAXIMUM_PROC_VERSION: AtomicI32 = AtomicI32::new(0);
pub(crate) unsafe fn get_proc_address_v2(
symbol: *const ::std::os::raw::c_char,
pfn: *mut *mut ::std::os::raw::c_void,
cuda_version: ::std::os::raw::c_int,
flags: cuuint64_t,
symbol_status: *mut CUdriverProcAddressQueryResult,
) -> CUresult {
if symbol == ptr::null() || pfn == ptr::null_mut() {
return CUresult::CUDA_ERROR_INVALID_VALUE;
}
MAXIMUM_PROC_VERSION.fetch_max(cuda_version, std::sync::atomic::Ordering::SeqCst);
let symbol = unsafe { CStr::from_ptr(symbol) };
let fn_ptr = get_proc_address(symbol.to_bytes(), flags, cuda_version as u32);
let (status, result) = if fn_ptr == ptr::null_mut() {
(
CUdriverProcAddressQueryResult::CU_GET_PROC_ADDRESS_SYMBOL_NOT_FOUND,
CUresult::CUDA_ERROR_NOT_FOUND,
)
} else if fn_ptr == usize::MAX as _ {
(
CUdriverProcAddressQueryResult::CU_GET_PROC_ADDRESS_VERSION_NOT_SUFFICIENT,
CUresult::CUDA_ERROR_NOT_FOUND,
)
} else {
*pfn = fn_ptr;
(
CUdriverProcAddressQueryResult::CU_GET_PROC_ADDRESS_SUCCESS,
CUresult::CUDA_SUCCESS,
)
};
if let Some(symbol_status) = symbol_status.as_mut() {
*symbol_status = status;
}
result
}
fn get_proc_address(name: &[u8], flag: u64, version: u32) -> *mut ::std::os::raw::c_void {
use crate::cuda::*;
include!("../../../process_address_table/table.rs")
}
|