diff options
author | yuzubot <[email protected]> | 2024-03-04 00:57:21 +0000 |
---|---|---|
committer | yuzubot <[email protected]> | 2024-03-04 00:57:21 +0000 |
commit | 276ceb26d0c58a00a0e65e3bf4d9c4371428f82d (patch) | |
tree | 587c6b5415501f1b1a1795ddd6df8d3403252cb4 /src/video_core/host1x/vic.cpp | |
parent | 15e6e48bef0216480661444a8d8b348c1cca47bb (diff) | |
download | yuzu-android-276ceb26d0c58a00a0e65e3bf4d9c4371428f82d.tar.gz yuzu-android-276ceb26d0c58a00a0e65e3bf4d9c4371428f82d.zip |
Merge yuzu-emu#12461
Diffstat (limited to 'src/video_core/host1x/vic.cpp')
-rw-r--r-- | src/video_core/host1x/vic.cpp | 1360 |
1 files changed, 1189 insertions, 171 deletions
diff --git a/src/video_core/host1x/vic.cpp b/src/video_core/host1x/vic.cpp index d154746af..3ad56bb80 100644 --- a/src/video_core/host1x/vic.cpp +++ b/src/video_core/host1x/vic.cpp @@ -2,6 +2,21 @@ // SPDX-License-Identifier: GPL-2.0-or-later #include <array> +#include <tuple> +#include <stdint.h> + +#if defined(ARCHITECTURE_x86_64) +#if defined(_MSC_VER) +#include <intrin.h> +#else +#include <immintrin.h> +#endif +#elif defined(ARCHITECTURE_arm64) +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wimplicit-int-conversion" +#include <sse2neon.h> +#pragma GCC diagnostic pop +#endif extern "C" { #if defined(__GNUC__) || defined(__clang__) @@ -14,228 +29,1231 @@ extern "C" { #endif } +#include "common/alignment.h" #include "common/assert.h" #include "common/bit_field.h" #include "common/logging/log.h" +#include "common/polyfill_thread.h" +#include "common/settings.h" #include "video_core/engines/maxwell_3d.h" +#include "video_core/guest_memory.h" #include "video_core/host1x/host1x.h" #include "video_core/host1x/nvdec.h" #include "video_core/host1x/vic.h" #include "video_core/memory_manager.h" #include "video_core/textures/decoders.h" -namespace Tegra { - -namespace Host1x { +#if defined(ARCHITECTURE_x86_64) +#include "common/x64/cpu_detect.h" +#endif +namespace Tegra::Host1x { namespace { -enum class VideoPixelFormat : u64_le { - RGBA8 = 0x1f, - BGRA8 = 0x20, - RGBX8 = 0x23, - YUV420 = 0x44, -}; -} // Anonymous namespace - -union VicConfig { - u64_le raw{}; - BitField<0, 7, VideoPixelFormat> pixel_format; - BitField<7, 2, u64_le> chroma_loc_horiz; - BitField<9, 2, u64_le> chroma_loc_vert; - BitField<11, 4, u64_le> block_linear_kind; - BitField<15, 4, u64_le> block_linear_height_log2; - BitField<32, 14, u64_le> surface_width_minus1; - BitField<46, 14, u64_le> surface_height_minus1; -}; - -Vic::Vic(Host1x& host1x_, std::shared_ptr<Nvdec> nvdec_processor_) - : host1x(host1x_), - nvdec_processor(std::move(nvdec_processor_)), converted_frame_buffer{nullptr, av_free} {} - -Vic::~Vic() = default; - -void Vic::ProcessMethod(Method method, u32 argument) { - LOG_DEBUG(HW_GPU, "Vic method 0x{:X}", static_cast<u32>(method)); - const u64 arg = static_cast<u64>(argument) << 8; - switch (method) { - case Method::Execute: +static bool HasSSE41() { +#if defined(ARCHITECTURE_x86_64) + const auto& cpu_caps{Common::GetCPUCaps()}; + return cpu_caps.sse4_1; +#else + return false; +#endif +} + +void SwizzleSurface(std::span<u8> output, u32 out_stride, std::span<const u8> input, u32 in_stride, + u32 height) { + /* + * Taken from https://github.com/averne/FFmpeg/blob/nvtegra/libavutil/hwcontext_nvtegra.c#L949 + * Can only handle block height == 1. + */ + const uint32_t x_mask = 0xFFFFFFD2u; + const uint32_t y_mask = 0x2Cu; + uint32_t offs_x{}; + uint32_t offs_y{}; + uint32_t offs_line{}; + + for (u32 y = 0; y < height; y += 2) { + auto dst_line = output.data() + offs_y * 16; + const auto src_line = input.data() + y * (in_stride / 16) * 16; + + offs_line = offs_x; + for (u32 x = 0; x < in_stride; x += 16) { + std::memcpy(&dst_line[offs_line * 16], &src_line[x], 16); + std::memcpy(&dst_line[offs_line * 16 + 16], &src_line[x + in_stride], 16); + offs_line = (offs_line - x_mask) & x_mask; + } + + offs_y = (offs_y - y_mask) & y_mask; + + /* Wrap into next tile row */ + if (!offs_y) { + offs_x += out_stride; + } + } +} + +} // namespace + +Vic::Vic(Host1x& host1x_, s32 id_, u32 syncpt, FrameQueue& frame_queue_) + : CDmaPusher{host1x_, id_}, id{id_}, syncpoint{syncpt}, + frame_queue{frame_queue_}, has_sse41{HasSSE41()} { + LOG_INFO(HW_GPU, "Created vic {}", id); +} + +Vic::~Vic() { + LOG_INFO(HW_GPU, "Destroying vic {}", id); + frame_queue.Close(id); +} + +void Vic::ProcessMethod(u32 method, u32 arg) { + LOG_TRACE(HW_GPU, "Vic {} method 0x{:X}", id, static_cast<u32>(method)); + regs.reg_array[method] = arg; + + switch (static_cast<Method>(method * sizeof(u32))) { + case Method::Execute: { Execute(); + } break; + default: break; - case Method::SetConfigStructOffset: - config_struct_address = arg; + } +} + +void Vic::Execute() { + ConfigStruct config{}; + memory_manager.ReadBlock(regs.config_struct_offset.Address(), &config, sizeof(ConfigStruct)); + + auto output_width{config.output_surface_config.out_surface_width + 1}; + auto output_height{config.output_surface_config.out_surface_height + 1}; + output_surface.resize_destructive(output_width * output_height); + + if (Settings::values.nvdec_emulation.GetValue() == Settings::NvdecEmulation::Off) [[unlikely]] { + // Fill the frame with black, as otherwise they can have random data and be very glitchy. + std::fill(output_surface.begin(), output_surface.end(), Pixel{}); + } else { + for (size_t i = 0; i < config.slot_structs.size(); i++) { + auto& slot_config{config.slot_structs[i]}; + if (!slot_config.config.slot_enable) { + continue; + } + + auto luma_offset{regs.surfaces[i][SurfaceIndex::Current].luma.Address()}; + if (nvdec_id == -1) { + nvdec_id = frame_queue.VicFindNvdecFdFromOffset(luma_offset); + } + + auto frame = frame_queue.GetFrame(nvdec_id, luma_offset); + if (!frame.get()) { + LOG_ERROR(HW_GPU, "Vic {} failed to get frame with offset 0x{:X}", id, luma_offset); + continue; + } + + switch (frame->GetPixelFormat()) { + case AV_PIX_FMT_YUV420P: + ReadY8__V8U8_N420<true>(slot_config, regs.surfaces[i], std::move(frame)); + break; + case AV_PIX_FMT_NV12: + ReadY8__V8U8_N420<false>(slot_config, regs.surfaces[i], std::move(frame)); + break; + default: + UNIMPLEMENTED_MSG( + "Unimplemented slot pixel format {}", + static_cast<u32>(slot_config.surface_config.slot_pixel_format.Value())); + break; + } + + Blend(config, slot_config); + } + } + + switch (config.output_surface_config.out_pixel_format) { + case VideoPixelFormat::A8B8G8R8: + case VideoPixelFormat::X8B8G8R8: + WriteABGR<VideoPixelFormat::A8B8G8R8>(config.output_surface_config); break; - case Method::SetOutputSurfaceLumaOffset: - output_surface_luma_address = arg; + case VideoPixelFormat::A8R8G8B8: + WriteABGR<VideoPixelFormat::A8R8G8B8>(config.output_surface_config); break; - case Method::SetOutputSurfaceChromaOffset: - output_surface_chroma_address = arg; + case VideoPixelFormat::Y8__V8U8_N420: + WriteY8__V8U8_N420(config.output_surface_config); break; default: + UNIMPLEMENTED_MSG("Unknown video pixel format {}", + config.output_surface_config.out_pixel_format.Value()); break; } } -void Vic::Execute() { - if (output_surface_luma_address == 0) { - LOG_ERROR(Service_NVDRV, "VIC Luma address not set."); - return; +template <bool Planar, bool Interlaced> +void Vic::ReadProgressiveY8__V8U8_N420(const SlotStruct& slot, + std::span<const PlaneOffsets> offsets, + std::shared_ptr<const FFmpeg::Frame> frame) { + const auto out_luma_width{slot.surface_config.slot_surface_width + 1}; + auto out_luma_height{slot.surface_config.slot_surface_height + 1}; + const auto out_luma_stride{out_luma_width}; + + if constexpr (Interlaced) { + out_luma_height *= 2; } - const VicConfig config{host1x.GMMU().Read<u64>(config_struct_address + 0x20)}; - auto frame = nvdec_processor->GetFrame(); - if (!frame) { + + slot_surface.resize_destructive(out_luma_width * out_luma_height); + + const auto in_luma_width{std::min(frame->GetWidth(), static_cast<s32>(out_luma_width))}; + const auto in_luma_height{std::min(frame->GetHeight(), static_cast<s32>(out_luma_height))}; + const auto in_luma_stride{frame->GetStride(0)}; + + const auto in_chroma_stride{frame->GetStride(1)}; + + const auto* luma_buffer{frame->GetPlane(0)}; + const auto* chroma_u_buffer{frame->GetPlane(1)}; + const auto* chroma_v_buffer{frame->GetPlane(2)}; + + LOG_TRACE(HW_GPU, + "Reading frame" + "\ninput luma {}x{} stride {} chroma {}x{} stride {}\n" + "output luma {}x{} stride {} chroma {}x{} stride {}", + in_luma_width, in_luma_height, in_luma_stride, in_luma_width / 2, in_luma_height / 2, + in_chroma_stride, out_luma_width, out_luma_height, out_luma_stride, out_luma_width, + out_luma_height, out_luma_stride); + + [[maybe_unused]] auto DecodeLinear = [&]() { + const auto alpha{static_cast<u16>(slot.config.planar_alpha.Value())}; + + for (s32 y = 0; y < in_luma_height; y++) { + const auto src_luma{y * in_luma_stride}; + const auto src_chroma{(y / 2) * in_chroma_stride}; + const auto dst{y * out_luma_stride}; + for (s32 x = 0; x < in_luma_width; x++) { + slot_surface[dst + x].r = static_cast<u16>(luma_buffer[src_luma + x] << 2); + // Chroma samples are duplicated horizontally and vertically. + if constexpr (Planar) { + slot_surface[dst + x].g = + static_cast<u16>(chroma_u_buffer[src_chroma + x / 2] << 2); + slot_surface[dst + x].b = + static_cast<u16>(chroma_v_buffer[src_chroma + x / 2] << 2); + } else { + slot_surface[dst + x].g = + static_cast<u16>(chroma_u_buffer[src_chroma + (x & ~1) + 0] << 2); + slot_surface[dst + x].b = + static_cast<u16>(chroma_u_buffer[src_chroma + (x & ~1) + 1] << 2); + } + slot_surface[dst + x].a = alpha; + } + } + }; + +#if defined(ARCHITECTURE_x86_64) + if (!has_sse41) { + DecodeLinear(); return; } - const u64 surface_width = config.surface_width_minus1 + 1; - const u64 surface_height = config.surface_height_minus1 + 1; - if (static_cast<u64>(frame->GetWidth()) != surface_width || - static_cast<u64>(frame->GetHeight()) != surface_height) { - // TODO: Properly support multiple video streams with differing frame dimensions - LOG_WARNING(Service_NVDRV, "Frame dimensions {}x{} don't match surface dimensions {}x{}", - frame->GetWidth(), frame->GetHeight(), surface_width, surface_height); +#endif + +#if defined(ARCHITECTURE_x86_64) || defined(ARCHITECTURE_arm64) + const auto alpha_linear{static_cast<u16>(slot.config.planar_alpha.Value())}; + const auto alpha = + _mm_slli_epi64(_mm_set1_epi64x(static_cast<s64>(slot.config.planar_alpha.Value())), 48); + + const auto shuffle_mask = _mm_set_epi8(13, 15, 14, 12, 9, 11, 10, 8, 5, 7, 6, 4, 1, 3, 2, 0); + const auto sse_aligned_width = Common::AlignDown(in_luma_width, 16); + + for (s32 y = 0; y < in_luma_height; y++) { + const auto src_luma{y * in_luma_stride}; + const auto src_chroma{(y / 2) * in_chroma_stride}; + const auto dst{y * out_luma_stride}; + s32 x = 0; + for (; x < sse_aligned_width; x += 16) { + // clang-format off + // Prefetch next iteration's memory + _mm_prefetch((const char*)&luma_buffer[src_luma + x + 16], _MM_HINT_T0); + + // Load 8 bytes * 2 of 8-bit luma samples + // luma0 = 00 00 00 00 00 00 00 00 LL LL LL LL LL LL LL LL + auto luma0 = _mm_loadl_epi64((__m128i*)&luma_buffer[src_luma + x + 0]); + auto luma1 = _mm_loadl_epi64((__m128i*)&luma_buffer[src_luma + x + 8]); + + __m128i chroma; + + if constexpr (Planar) { + _mm_prefetch((const char*)&chroma_u_buffer[src_chroma + x / 2 + 8], _MM_HINT_T0); + _mm_prefetch((const char*)&chroma_v_buffer[src_chroma + x / 2 + 8], _MM_HINT_T0); + + // If Chroma is planar, we have separate U and V planes, load 8 bytes of each + // chroma_u0 = 00 00 00 00 00 00 00 00 UU UU UU UU UU UU UU UU + // chroma_v0 = 00 00 00 00 00 00 00 00 VV VV VV VV VV VV VV VV + auto chroma_u0 = _mm_loadl_epi64((__m128i*)&chroma_u_buffer[src_chroma + x / 2]); + auto chroma_v0 = _mm_loadl_epi64((__m128i*)&chroma_v_buffer[src_chroma + x / 2]); + + // Interleave the 8 bytes of U and V into a single 16 byte reg + // chroma = VV UU VV UU VV UU VV UU VV UU VV UU VV UU VV UU + chroma = _mm_unpacklo_epi8(chroma_u0, chroma_v0); + } else { + _mm_prefetch((const char*)&chroma_u_buffer[src_chroma + x / 2 + 8], _MM_HINT_T0); + + // Chroma is already interleaved in semiplanar format, just load 16 bytes + // chroma = VV UU VV UU VV UU VV UU VV UU VV UU VV UU VV UU + chroma = _mm_load_si128((__m128i*)&chroma_u_buffer[src_chroma + x]); + } + + // Convert the low 8 bytes of 8-bit luma into 16-bit luma + // luma0 = [00] [00] [00] [00] [00] [00] [00] [00] [LL] [LL] [LL] [LL] [LL] [LL] [LL] [LL] + // -> + // luma0 = [00 LL] [00 LL] [00 LL] [00 LL] [00 LL] [00 LL] [00 LL] [00 LL] + luma0 = _mm_cvtepu8_epi16(luma0); + luma1 = _mm_cvtepu8_epi16(luma1); + + // Treat the 8 bytes of 8-bit chroma as 16-bit channels, this allows us to take both the + // U and V together as one element. Using chroma twice here duplicates the values, as we + // take element 0 from chroma, and then element 0 from chroma again, etc. We need to + // duplicate chroma horitonally as chroma is half the width of luma. + // chroma = [VV8 UU8] [VV7 UU7] [VV6 UU6] [VV5 UU5] [VV4 UU4] [VV3 UU3] [VV2 UU2] [VV1 UU1] + // -> + // chroma00 = [VV4 UU4] [VV4 UU4] [VV3 UU3] [VV3 UU3] [VV2 UU2] [VV2 UU2] [VV1 UU1] [VV1 UU1] + // chroma01 = [VV8 UU8] [VV8 UU8] [VV7 UU7] [VV7 UU7] [VV6 UU6] [VV6 UU6] [VV5 UU5] [VV5 UU5] + auto chroma00 = _mm_unpacklo_epi16(chroma, chroma); + auto chroma01 = _mm_unpackhi_epi16(chroma, chroma); + + // Interleave the 16-bit luma and chroma. + // luma0 = [008 LL8] [007 LL7] [006 LL6] [005 LL5] [004 LL4] [003 LL3] [002 LL2] [001 LL1] + // chroma00 = [VV8 UU8] [VV7 UU7] [VV6 UU6] [VV5 UU5] [VV4 UU4] [VV3 UU3] [VV2 UU2] [VV1 UU1] + // -> + // yuv0 = [VV4 UU4 004 LL4] [VV3 UU3 003 LL3] [VV2 UU2 002 LL2] [VV1 UU1 001 LL1] + // yuv1 = [VV8 UU8 008 LL8] [VV7 UU7 007 LL7] [VV6 UU6 006 LL6] [VV5 UU5 005 LL5] + auto yuv0 = _mm_unpacklo_epi16(luma0, chroma00); + auto yuv1 = _mm_unpackhi_epi16(luma0, chroma00); + auto yuv2 = _mm_unpacklo_epi16(luma1, chroma01); + auto yuv3 = _mm_unpackhi_epi16(luma1, chroma01); + + // Shuffle the luma/chroma into the channel ordering we actually want. The high byte of + // the luma which is now a constant 0 after converting 8-bit -> 16-bit is used as the + // alpha. Luma -> R, U -> G, V -> B, 0 -> A + // yuv0 = [VV4 UU4 004 LL4] [VV3 UU3 003 LL3] [VV2 UU2 002 LL2] [VV1 UU1 001 LL1] + // -> + // yuv0 = [AA4 VV4 UU4 LL4] [AA3 VV3 UU3 LL3] [AA2 VV2 UU2 LL2] [AA1 VV1 UU1 LL1] + yuv0 = _mm_shuffle_epi8(yuv0, shuffle_mask); + yuv1 = _mm_shuffle_epi8(yuv1, shuffle_mask); + yuv2 = _mm_shuffle_epi8(yuv2, shuffle_mask); + yuv3 = _mm_shuffle_epi8(yuv3, shuffle_mask); + + // Extend the 8-bit channels we have into 16-bits, as that's the target surface format. + // Since this turns just the low 8 bytes into 16 bytes, the second of + // each operation here right shifts the register by 8 to get the high pixels. + // yuv0 = [AA4] [VV4] [UU4] [LL4] [AA3] [VV3] [UU3] [LL3] [AA2] [VV2] [UU2] [LL2] [AA1] [VV1] [UU1] [LL1] + // -> + // yuv01 = [002 AA2] [002 VV2] [002 UU2] [002 LL2] [001 AA1] [001 VV1] [001 UU1] [001 LL1] + // yuv23 = [004 AA4] [004 VV4] [004 UU4] [004 LL4] [003 AA3] [003 VV3] ]003 UU3] [003 LL3] + auto yuv01 = _mm_cvtepu8_epi16(yuv0); + auto yuv23 = _mm_cvtepu8_epi16(_mm_srli_si128(yuv0, 8)); + auto yuv45 = _mm_cvtepu8_epi16(yuv1); + auto yuv67 = _mm_cvtepu8_epi16(_mm_srli_si128(yuv1, 8)); + auto yuv89 = _mm_cvtepu8_epi16(yuv2); + auto yuv1011 = _mm_cvtepu8_epi16(_mm_srli_si128(yuv2, 8)); + auto yuv1213 = _mm_cvtepu8_epi16(yuv3); + auto yuv1415 = _mm_cvtepu8_epi16(_mm_srli_si128(yuv3, 8)); + + // Left-shift all 16-bit channels by 2, this is to get us into a 10-bit format instead + // of 8, which is the format alpha is in, as well as other blending values. + yuv01 = _mm_slli_epi16(yuv01, 2); + yuv23 = _mm_slli_epi16(yuv23, 2); + yuv45 = _mm_slli_epi16(yuv45, 2); + yuv67 = _mm_slli_epi16(yuv67, 2); + yuv89 = _mm_slli_epi16(yuv89, 2); + yuv1011 = _mm_slli_epi16(yuv1011, 2); + yuv1213 = _mm_slli_epi16(yuv1213, 2); + yuv1415 = _mm_slli_epi16(yuv1415, 2); + + // OR in the planar alpha, this has already been duplicated and shifted into position, + // and just fills in the AA channels with the actual alpha value. + yuv01 = _mm_or_si128(yuv01, alpha); + yuv23 = _mm_or_si128(yuv23, alpha); + yuv45 = _mm_or_si128(yuv45, alpha); + yuv67 = _mm_or_si128(yuv67, alpha); + yuv89 = _mm_or_si128(yuv89, alpha); + yuv1011 = _mm_or_si128(yuv1011, alpha); + yuv1213 = _mm_or_si128(yuv1213, alpha); + yuv1415 = _mm_or_si128(yuv1415, alpha); + + // Store out the pixels. One pixel is now 8 bytes, so each store is 2 pixels. + // [AA AA] [VV VV] [UU UU] [LL LL] [AA AA] [VV VV] [UU UU] [LL LL] + _mm_store_si128((__m128i*)&slot_surface[dst + x + 0], yuv01); + _mm_store_si128((__m128i*)&slot_surface[dst + x + 2], yuv23); + _mm_store_si128((__m128i*)&slot_surface[dst + x + 4], yuv45); + _mm_store_si128((__m128i*)&slot_surface[dst + x + 6], yuv67); + _mm_store_si128((__m128i*)&slot_surface[dst + x + 8], yuv89); + _mm_store_si128((__m128i*)&slot_surface[dst + x + 10], yuv1011); + _mm_store_si128((__m128i*)&slot_surface[dst + x + 12], yuv1213); + _mm_store_si128((__m128i*)&slot_surface[dst + x + 14], yuv1415); + + // clang-format on + } + + for (; x < in_luma_width; x++) { + slot_surface[dst + x].r = static_cast<u16>(luma_buffer[src_luma + x] << 2); + // Chroma samples are duplicated horizontally and vertically. + if constexpr (Planar) { + slot_surface[dst + x].g = + static_cast<u16>(chroma_u_buffer[src_chroma + x / 2] << 2); + slot_surface[dst + x].b = + static_cast<u16>(chroma_v_buffer[src_chroma + x / 2] << 2); + } else { + slot_surface[dst + x].g = + static_cast<u16>(chroma_u_buffer[src_chroma + (x & ~1) + 0] << 2); + slot_surface[dst + x].b = + static_cast<u16>(chroma_u_buffer[src_chroma + (x & ~1) + 1] << 2); + } + slot_surface[dst + x].a = alpha_linear; + } + } +#else + DecodeLinear(); +#endif +} + +template <bool Planar, bool TopField> +void Vic::ReadInterlacedY8__V8U8_N420(const SlotStruct& slot, std::span<const PlaneOffsets> offsets, + std::shared_ptr<const FFmpeg::Frame> frame) { + if constexpr (!Planar) { + ReadProgressiveY8__V8U8_N420<Planar, true>(slot, offsets, std::move(frame)); + return; } - switch (config.pixel_format) { - case VideoPixelFormat::RGBA8: - case VideoPixelFormat::BGRA8: - case VideoPixelFormat::RGBX8: - WriteRGBFrame(std::move(frame), config); + const auto out_luma_width{slot.surface_config.slot_surface_width + 1}; + const auto out_luma_height{(slot.surface_config.slot_surface_height + 1) * 2}; + const auto out_luma_stride{out_luma_width}; + + slot_surface.resize_destructive(out_luma_width * out_luma_height); + + const auto in_luma_width{std::min(frame->GetWidth(), static_cast<s32>(out_luma_width))}; + [[maybe_unused]] const auto in_luma_height{ + std::min(frame->GetHeight(), static_cast<s32>(out_luma_height))}; + const auto in_luma_stride{frame->GetStride(0)}; + + [[maybe_unused]] const auto in_chroma_width{(frame->GetWidth() + 1) / 2}; + const auto in_chroma_height{(frame->GetHeight() + 1) / 2}; + const auto in_chroma_stride{frame->GetStride(1)}; + + const auto* luma_buffer{frame->GetPlane(0)}; + const auto* chroma_u_buffer{frame->GetPlane(1)}; + const auto* chroma_v_buffer{frame->GetPlane(2)}; + + LOG_TRACE(HW_GPU, + "Reading frame" + "\ninput luma {}x{} stride {} chroma {}x{} stride {}\n" + "output luma {}x{} stride {} chroma {}x{} stride {}", + in_luma_width, in_luma_height, in_luma_stride, in_chroma_width, in_chroma_height, + in_chroma_stride, out_luma_width, out_luma_height, out_luma_stride, + out_luma_width / 2, out_luma_height / 2, out_luma_stride); + + [[maybe_unused]] auto DecodeLinear = [&]() { + auto DecodeBobField = [&]() { + const auto alpha{static_cast<u16>(slot.config.planar_alpha.Value())}; + + for (s32 y = static_cast<s32>(TopField == false); y < in_chroma_height * 2; y += 2) { + const auto src_luma{y * in_luma_stride}; + const auto src_chroma{(y / 2) * in_chroma_stride}; + const auto dst{y * out_luma_stride}; + for (s32 x = 0; x < in_luma_width; x++) { + slot_surface[dst + x].r = static_cast<u16>(luma_buffer[src_luma + x] << 2); + if constexpr (Planar) { + slot_surface[dst + x].g = + static_cast<u16>(chroma_u_buffer[src_chroma + x / 2] << 2); + slot_surface[dst + x].b = + static_cast<u16>(chroma_v_buffer[src_chroma + x / 2] << 2); + } else { + slot_surface[dst + x].g = + static_cast<u16>(chroma_u_buffer[src_chroma + (x & ~1) + 0] << 2); + slot_surface[dst + x].b = + static_cast<u16>(chroma_u_buffer[src_chroma + (x & ~1) + 1] << 2); + } + slot_surface[dst + x].a = alpha; + } + + s32 other_line{}; + if constexpr (TopField) { + other_line = (y + 1) * out_luma_stride; + } else { + other_line = (y - 1) * out_luma_stride; + } + std::memcpy(&slot_surface[other_line], &slot_surface[dst], + out_luma_width * sizeof(Pixel)); + } + }; + + switch (slot.config.deinterlace_mode) { + case DXVAHD_DEINTERLACE_MODE_PRIVATE::WEAVE: + // Due to the fact that we do not write to memory in nvdec, we cannot use Weave as it + // relies on the previous frame. + DecodeBobField(); + break; + case DXVAHD_DEINTERLACE_MODE_PRIVATE::BOB_FIELD: + DecodeBobField(); + break; + case DXVAHD_DEINTERLACE_MODE_PRIVATE::DISI1: + // Due to the fact that we do not write to memory in nvdec, we cannot use DISI1 as it + // relies on previous/next frames. + DecodeBobField(); + break; + default: + UNIMPLEMENTED_MSG("Deinterlace mode {} not implemented!", + static_cast<s32>(slot.config.deinterlace_mode.Value())); + break; + } + }; + + DecodeLinear(); +} + +template <bool Planar> +void Vic::ReadY8__V8U8_N420(const SlotStruct& slot, std::span<const PlaneOffsets> offsets, + std::shared_ptr<const FFmpeg::Frame> frame) { + switch (slot.config.frame_format) { + case DXVAHD_FRAME_FORMAT::PROGRESSIVE: + ReadProgressiveY8__V8U8_N420<Planar>(slot, offsets, std::move(frame)); break; - case VideoPixelFormat::YUV420: - WriteYUVFrame(std::move(frame), config); + case DXVAHD_FRAME_FORMAT::TOP_FIELD: + ReadInterlacedY8__V8U8_N420<Planar, true>(slot, offsets, std::move(frame)); + break; + case DXVAHD_FRAME_FORMAT::BOTTOM_FIELD: + ReadInterlacedY8__V8U8_N420<Planar, false>(slot, offsets, std::move(frame)); break; default: - UNIMPLEMENTED_MSG("Unknown video pixel format {:X}", config.pixel_format.Value()); + LOG_ERROR(HW_GPU, "Unknown deinterlace format {}", + static_cast<s32>(slot.config.frame_format.Value())); break; } } -void Vic::WriteRGBFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config) { - LOG_TRACE(Service_NVDRV, "Writing RGB Frame"); - - const auto frame_width = frame->GetWidth(); - const auto frame_height = frame->GetHeight(); - const auto frame_format = frame->GetPixelFormat(); - - if (!scaler_ctx || frame_width != scaler_width || frame_height != scaler_height) { - const AVPixelFormat target_format = [pixel_format = config.pixel_format]() { - switch (pixel_format) { - case VideoPixelFormat::RGBA8: - return AV_PIX_FMT_RGBA; - case VideoPixelFormat::BGRA8: - return AV_PIX_FMT_BGRA; - case VideoPixelFormat::RGBX8: - return AV_PIX_FMT_RGB0; - default: - return AV_PIX_FMT_RGBA; - } - }(); +void Vic::Blend(const ConfigStruct& config, const SlotStruct& slot) { + constexpr auto add_one([](u32 v) -> u32 { return v != 0 ? v + 1 : 0; }); - sws_freeContext(scaler_ctx); - // Frames are decoded into either YUV420 or NV12 formats. Convert to desired RGB format - scaler_ctx = sws_getContext(frame_width, frame_height, frame_format, frame_width, - frame_height, target_format, 0, nullptr, nullptr, nullptr); - scaler_width = frame_width; - scaler_height = frame_height; - converted_frame_buffer.reset(); - } - if (!converted_frame_buffer) { - const size_t frame_size = frame_width * frame_height * 4; - converted_frame_buffer = AVMallocPtr{static_cast<u8*>(av_malloc(frame_size)), av_free}; + auto source_left{add_one(static_cast<u32>(slot.config.source_rect_left.Value()))}; + auto source_right{add_one(static_cast<u32>(slot.config.source_rect_right.Value()))}; + auto source_top{add_one(static_cast<u32>(slot.config.source_rect_top.Value()))}; + auto source_bottom{add_one(static_cast<u32>(slot.config.source_rect_bottom.Value()))}; + + const auto dest_left{add_one(static_cast<u32>(slot.config.dest_rect_left.Value()))}; + const auto dest_right{add_one(static_cast<u32>(slot.config.dest_rect_right.Value()))}; + const auto dest_top{add_one(static_cast<u32>(slot.config.dest_rect_top.Value()))}; + const auto dest_bottom{add_one(static_cast<u32>(slot.config.dest_rect_bottom.Value()))}; + + auto rect_left{add_one(config.output_config.target_rect_left.Value())}; + auto rect_right{add_one(config.output_config.target_rect_right.Value())}; + auto rect_top{add_one(config.output_config.target_rect_top.Value())}; + auto rect_bottom{add_one(config.output_config.target_rect_bottom.Value())}; + + rect_left = std::max(rect_left, dest_left); + rect_right = std::min(rect_right, dest_right); + rect_top = std::max(rect_top, dest_top); + rect_bottom = std::min(rect_bottom, dest_bottom); + + source_left = std::max(source_left, rect_left); + source_right = std::min(source_right, rect_right); + source_top = std::max(source_top, rect_top); + source_bottom = std::min(source_bottom, rect_bottom); + + if (source_left >= source_right || source_top >= source_bottom) { + return; } - const std::array<int, 4> converted_stride{frame_width * 4, frame_height * 4, 0, 0}; - u8* const converted_frame_buf_addr{converted_frame_buffer.get()}; - sws_scale(scaler_ctx, frame->GetPlanes(), frame->GetStrides(), 0, frame_height, - &converted_frame_buf_addr, converted_stride.data()); - - // Use the minimum of surface/frame dimensions to avoid buffer overflow. - const u32 surface_width = static_cast<u32>(config.surface_width_minus1) + 1; - const u32 surface_height = static_cast<u32>(config.surface_height_minus1) + 1; - const u32 width = std::min(surface_width, static_cast<u32>(frame_width)); - const u32 height = std::min(surface_height, static_cast<u32>(frame_height)); - const u32 blk_kind = static_cast<u32>(config.block_linear_kind); - if (blk_kind != 0) { - // swizzle pitch linear to block linear - const u32 block_height = static_cast<u32>(config.block_linear_height_log2); - const auto size = Texture::CalculateSize(true, 4, width, height, 1, block_height, 0); - luma_buffer.resize_destructive(size); - std::span<const u8> frame_buff(converted_frame_buf_addr, 4 * width * height); - Texture::SwizzleSubrect(luma_buffer, frame_buff, 4, width, height, 1, 0, 0, width, height, - block_height, 0, width * 4); - - host1x.GMMU().WriteBlock(output_surface_luma_address, luma_buffer.data(), size); + + const auto out_surface_width{config.output_surface_config.out_surface_width + 1}; + [[maybe_unused]] const auto out_surface_height{config.output_surface_config.out_surface_height + + 1}; + const auto in_surface_width{slot.surface_config.slot_surface_width + 1}; + + source_bottom = std::min(source_bottom, out_surface_height); + source_right = std::min(source_right, out_surface_width); + + // TODO Alpha blending. No games I've seen use more than a single surface or supply an alpha + // below max, so it's ignored for now. + + if (!slot.color_matrix.matrix_enable) { + const auto copy_width = std::min(source_right - source_left, rect_right - rect_left); + + for (u32 y = source_top; y < source_bottom; y++) { + const auto dst_line = y * out_surface_width; + const auto src_line = y * in_surface_width; + std::memcpy(&output_surface[dst_line + rect_left], + &slot_surface[src_line + source_left], copy_width * sizeof(Pixel)); + } } else { - // send pitch linear frame - const size_t linear_size = width * height * 4; - host1x.GMMU().WriteBlock(output_surface_luma_address, converted_frame_buf_addr, - linear_size); + // clang-format off + // Colour conversion is enabled, this is a 3x4 * 4x1 matrix multiplication, resulting in a 3x1 matrix. + // | r0c0 r0c1 r0c2 r0c3 | | R | | R | + // | r1c0 r1c1 r1c2 r1c3 | * | G | = | G | + // | r2c0 r2c1 r2c2 r2c3 | | B | | B | + // | 1 | + // clang-format on + + [[maybe_unused]] auto DecodeLinear = [&]() { + const auto r0c0 = static_cast<s32>(slot.color_matrix.matrix_coeff00.Value()); + const auto r0c1 = static_cast<s32>(slot.color_matrix.matrix_coeff01.Value()); + const auto r0c2 = static_cast<s32>(slot.color_matrix.matrix_coeff02.Value()); + const auto r0c3 = static_cast<s32>(slot.color_matrix.matrix_coeff03.Value()); + const auto r1c0 = static_cast<s32>(slot.color_matrix.matrix_coeff10.Value()); + const auto r1c1 = static_cast<s32>(slot.color_matrix.matrix_coeff11.Value()); + const auto r1c2 = static_cast<s32>(slot.color_matrix.matrix_coeff12.Value()); + const auto r1c3 = static_cast<s32>(slot.color_matrix.matrix_coeff13.Value()); + const auto r2c0 = static_cast<s32>(slot.color_matrix.matrix_coeff20.Value()); + const auto r2c1 = static_cast<s32>(slot.color_matrix.matrix_coeff21.Value()); + const auto r2c2 = static_cast<s32>(slot.color_matrix.matrix_coeff22.Value()); + const auto r2c3 = static_cast<s32>(slot.color_matrix.matrix_coeff23.Value()); + + const auto shift = static_cast<s32>(slot.color_matrix.matrix_r_shift.Value()); + const auto clamp_min = static_cast<s32>(slot.config.soft_clamp_low.Value()); + const auto clamp_max = static_cast<s32>(slot.config.soft_clamp_high.Value()); + + auto MatMul = [&](const Pixel& in_pixel) -> std::tuple<s32, s32, s32, s32> { + auto r = static_cast<s32>(in_pixel.r); + auto g = static_cast<s32>(in_pixel.g); + auto b = static_cast<s32>(in_pixel.b); + + r = in_pixel.r * r0c0 + in_pixel.g * r0c1 + in_pixel.b * r0c2; + g = in_pixel.r * r1c0 + in_pixel.g * r1c1 + in_pixel.b * r1c2; + b = in_pixel.r * r2c0 + in_pixel.g * r2c1 + in_pixel.b * r2c2; + + r >>= shift; + g >>= shift; + b >>= shift; + + r += r0c3; + g += r1c3; + b += r2c3; + + r >>= 8; + g >>= 8; + b >>= 8; + + return {r, g, b, static_cast<s32>(in_pixel.a)}; + }; + + for (u32 y = source_top; y < source_bottom; y++) { + const auto src{y * in_surface_width + source_left}; + const auto dst{y * out_surface_width + rect_left}; + for (u32 x = source_left; x < source_right; x++) { + auto [r, g, b, a] = MatMul(slot_surface[src + x]); + + r = std::clamp(r, clamp_min, clamp_max); + g = std::clamp(g, clamp_min, clamp_max); + b = std::clamp(b, clamp_min, clamp_max); + a = std::clamp(a, clamp_min, clamp_max); + + output_surface[dst + x] = {static_cast<u16>(r), static_cast<u16>(g), + static_cast<u16>(b), static_cast<u16>(a)}; + } + } + }; + +#if defined(ARCHITECTURE_x86_64) + if (!has_sse41) { + DecodeLinear(); + return; + } +#endif + +#if defined(ARCHITECTURE_x86_64) || defined(ARCHITECTURE_arm64) + // Fill the columns, e.g + // c0 = [00 00 00 00] [r2c0 r2c0 r2c0 r2c0] [r1c0 r1c0 r1c0 r1c0] [r0c0 r0c0 r0c0 r0c0] + + const auto c0 = _mm_set_epi32(0, static_cast<s32>(slot.color_matrix.matrix_coeff20.Value()), + static_cast<s32>(slot.color_matrix.matrix_coeff10.Value()), + static_cast<s32>(slot.color_matrix.matrix_coeff00.Value())); + const auto c1 = _mm_set_epi32(0, static_cast<s32>(slot.color_matrix.matrix_coeff21.Value()), + static_cast<s32>(slot.color_matrix.matrix_coeff11.Value()), + static_cast<s32>(slot.color_matrix.matrix_coeff01.Value())); + const auto c2 = _mm_set_epi32(0, static_cast<s32>(slot.color_matrix.matrix_coeff22.Value()), + static_cast<s32>(slot.color_matrix.matrix_coeff12.Value()), + static_cast<s32>(slot.color_matrix.matrix_coeff02.Value())); + const auto c3 = _mm_set_epi32(0, static_cast<s32>(slot.color_matrix.matrix_coeff23.Value()), + static_cast<s32>(slot.color_matrix.matrix_coeff13.Value()), + static_cast<s32>(slot.color_matrix.matrix_coeff03.Value())); + + // Set the matrix right-shift as a single element. + const auto shift = + _mm_set_epi32(0, 0, 0, static_cast<s32>(slot.color_matrix.matrix_r_shift.Value())); + + // Set every 16-bit value to the soft clamp values for clamping every 16-bit channel. + const auto clamp_min = _mm_set1_epi16(static_cast<u16>(slot.config.soft_clamp_low.Value())); + const auto clamp_max = + _mm_set1_epi16(static_cast<u16>(slot.config.soft_clamp_high.Value())); + + // clang-format off + + auto MatMul = [](__m128i& p, const __m128i& col0, const __m128i& col1, const __m128i& col2, + const __m128i& col3, const __m128i& trm_shift) -> __m128i { + // Duplicate the 32-bit channels, e.g + // p = [AA AA AA AA] [BB BB BB BB] [GG GG GG GG] [RR RR RR RR] + // -> + // r = [RR4 RR4 RR4 RR4] [RR3 RR3 RR3 RR3] [RR2 RR2 RR2 RR2] [RR1 RR1 RR1 RR1] + auto r = _mm_shuffle_epi32(p, 0x0); + auto g = _mm_shuffle_epi32(p, 0x55); + auto b = _mm_shuffle_epi32(p, 0xAA); + + // Multiply the rows and columns c0 * r, c1 * g, c2 * b, e.g + // r = [RR4 RR4 RR4 RR4] [ RR3 RR3 RR3 RR3] [ RR2 RR2 RR2 RR2] [ RR1 RR1 RR1 RR1] + // * + // c0 = [ 00 00 00 00] [r2c0 r2c0 r2c0 r2c0] [r1c0 r1c0 r1c0 r1c0] [r0c0 r0c0 r0c0 r0c0] + r = _mm_mullo_epi32(r, col0); + g = _mm_mullo_epi32(g, col1); + b = _mm_mullo_epi32(b, col2); + + // Add them all together vertically, such that the 32-bit element + // out[0] = (r[0] * c0[0]) + (g[0] * c1[0]) + (b[0] * c2[0]) + auto out = _mm_add_epi32(_mm_add_epi32(r, g), b); + + // Shift the result by r_shift, as the TRM says + out = _mm_sra_epi32(out, trm_shift); + + // Add the final column. Because the 4x1 matrix has this row as 1, there's no need to + // multiply by it, and as per the TRM this column ignores r_shift, so it's just added + // here after shifting. + out = _mm_add_epi32(out, col3); + + // Shift the result back from S12.8 to integer values + return _mm_srai_epi32(out, 8); + }; + + for (u32 y = source_top; y < source_bottom; y++) { + const auto src{y * in_surface_width + source_left}; + const auto dst{y * out_surface_width + rect_left}; + for (u32 x = source_left; x < source_right; x += 8) { + // clang-format off + // Prefetch the next iteration's memory + _mm_prefetch((const char*)&slot_surface[src + x + 8], _MM_HINT_T0); + + // Load in pixels + // p01 = [AA AA] [BB BB] [GG GG] [RR RR] [AA AA] [BB BB] [GG GG] [RR RR] + auto p01 = _mm_load_si128((__m128i*)&slot_surface[src + x + 0]); + auto p23 = _mm_load_si128((__m128i*)&slot_surface[src + x + 2]); + auto p45 = _mm_load_si128((__m128i*)&slot_surface[src + x + 4]); + auto p67 = _mm_load_si128((__m128i*)&slot_surface[src + x + 6]); + + // Convert the 16-bit channels into 32-bit (unsigned), as the matrix values are + // 32-bit and to avoid overflow. + // p01 = [AA2 AA2] [BB2 BB2] [GG2 GG2] [RR2 RR2] [AA1 AA1] [BB1 BB1] [GG1 GG1] [RR1 RR1] + // -> + // p01_lo = [001 001 AA1 AA1] [001 001 BB1 BB1] [001 001 GG1 GG1] [001 001 RR1 RR1] + // p01_hi = [002 002 AA2 AA2] [002 002 BB2 BB2] [002 002 GG2 GG2] [002 002 RR2 RR2] + auto p01_lo = _mm_cvtepu16_epi32(p01); + auto p01_hi = _mm_cvtepu16_epi32(_mm_srli_si128(p01, 8)); + auto p23_lo = _mm_cvtepu16_epi32(p23); + auto p23_hi = _mm_cvtepu16_epi32(_mm_srli_si128(p23, 8)); + auto p45_lo = _mm_cvtepu16_epi32(p45); + auto p45_hi = _mm_cvtepu16_epi32(_mm_srli_si128(p45, 8)); + auto p67_lo = _mm_cvtepu16_epi32(p67); + auto p67_hi = _mm_cvtepu16_epi32(_mm_srli_si128(p67, 8)); + + // Matrix multiply the pixel, doing the colour conversion. + auto out0 = MatMul(p01_lo, c0, c1, c2, c3, shift); + auto out1 = MatMul(p01_hi, c0, c1, c2, c3, shift); + auto out2 = MatMul(p23_lo, c0, c1, c2, c3, shift); + auto out3 = MatMul(p23_hi, c0, c1, c2, c3, shift); + auto out4 = MatMul(p45_lo, c0, c1, c2, c3, shift); + auto out5 = MatMul(p45_hi, c0, c1, c2, c3, shift); + auto out6 = MatMul(p67_lo, c0, c1, c2, c3, shift); + auto out7 = MatMul(p67_hi, c0, c1, c2, c3, shift); + + // Pack the 32-bit channel pixels back into 16-bit using unsigned saturation + // out0 = [001 001 AA1 AA1] [001 001 BB1 BB1] [001 001 GG1 GG1] [001 001 RR1 RR1] + // out1 = [002 002 AA2 AA2] [002 002 BB2 BB2] [002 002 GG2 GG2] [002 002 RR2 RR2] + // -> + // done0 = [AA2 AA2] [BB2 BB2] [GG2 GG2] [RR2 RR2] [AA1 AA1] [BB1 BB1] [GG1 GG1] [RR1 RR1] + auto done0 = _mm_packus_epi32(out0, out1); + auto done1 = _mm_packus_epi32(out2, out3); + auto done2 = _mm_packus_epi32(out4, out5); + auto done3 = _mm_packus_epi32(out6, out7); + + // Blend the original alpha back into the pixel, as the matrix multiply gives us a + // 3-channel output, not 4. + // 0x88 = b10001000, taking RGB from the first argument, A from the second argument. + // done0 = [002 002] [BB2 BB2] [GG2 GG2] [RR2 RR2] [001 001] [BB1 BB1] [GG1 GG1] [RR1 RR1] + // -> + // done0 = [AA2 AA2] [BB2 BB2] [GG2 GG2] [RR2 RR2] [AA1 AA1] [BB1 BB1] [GG1 GG1] [RR1 RR1] + done0 = _mm_blend_epi16(done0, p01, 0x88); + done1 = _mm_blend_epi16(done1, p23, 0x88); + done2 = _mm_blend_epi16(done2, p45, 0x88); + done3 = _mm_blend_epi16(done3, p67, 0x88); + + // Clamp the 16-bit channels to the soft-clamp min/max. + done0 = _mm_max_epu16(done0, clamp_min); + done1 = _mm_max_epu16(done1, clamp_min); + done2 = _mm_max_epu16(done2, clamp_min); + done3 = _mm_max_epu16(done3, clamp_min); + + done0 = _mm_min_epu16(done0, clamp_max); + done1 = _mm_min_epu16(done1, clamp_max); + done2 = _mm_min_epu16(done2, clamp_max); + done3 = _mm_min_epu16(done3, clamp_max); + + // Store the pixels to the output surface. + _mm_store_si128((__m128i*)&output_surface[dst + x + 0], done0); + _mm_store_si128((__m128i*)&output_surface[dst + x + 2], done1); + _mm_store_si128((__m128i*)&output_surface[dst + x + 4], done2); + _mm_store_si128((__m128i*)&output_surface[dst + x + 6], done3); + + } + } + // clang-format on +#else + DecodeLinear(); +#endif } } -void Vic::WriteYUVFrame(std::unique_ptr<FFmpeg::Frame> frame, const VicConfig& config) { - LOG_TRACE(Service_NVDRV, "Writing YUV420 Frame"); +void Vic::WriteY8__V8U8_N420(const OutputSurfaceConfig& output_surface_config) { + constexpr u32 BytesPerPixel = 1; - const std::size_t surface_width = config.surface_width_minus1 + 1; - const std::size_t surface_height = config.surface_height_minus1 + 1; - const std::size_t aligned_width = (surface_width + 0xff) & ~0xffUL; - // Use the minimum of surface/frame dimensions to avoid buffer overflow. - const auto frame_width = std::min(surface_width, static_cast<size_t>(frame->GetWidth())); - const auto frame_height = std::min(surface_height, static_cast<size_t>(frame->GetHeight())); + auto surface_width{output_surface_config.out_surface_width + 1}; + auto surface_height{output_surface_config.out_surface_height + 1}; + const auto surface_stride{surface_width}; - const auto stride = static_cast<size_t>(frame->GetStride(0)); + const auto out_luma_width = output_surface_config.out_luma_width + 1; + const auto out_luma_height = output_surface_config.out_luma_height + 1; + const auto out_luma_stride = Common::AlignUp(out_luma_width * BytesPerPixel, 0x10); + const auto out_luma_size = out_luma_height * out_luma_stride; - luma_buffer.resize_destructive(aligned_width * surface_height); - chroma_buffer.resize_destructive(aligned_width * surface_height / 2); + const auto out_chroma_width = output_surface_config.out_chroma_width + 1; + const auto out_chroma_height = output_surface_config.out_chroma_height + 1; + const auto out_chroma_stride = Common::AlignUp(out_chroma_width * BytesPerPixel * 2, 0x10); + const auto out_chroma_size = out_chroma_height * out_chroma_stride; - // Populate luma buffer - const u8* luma_src = frame->GetData(0); - for (std::size_t y = 0; y < frame_height; ++y) { - const std::size_t src = y * stride; - const std::size_t dst = y * aligned_width; - std::memcpy(luma_buffer.data() + dst, luma_src + src, frame_width); - } - host1x.GMMU().WriteBlock(output_surface_luma_address, luma_buffer.data(), luma_buffer.size()); - - // Chroma - const std::size_t half_height = frame_height / 2; - const auto half_stride = static_cast<size_t>(frame->GetStride(1)); - - switch (frame->GetPixelFormat()) { - case AV_PIX_FMT_YUV420P: { - // Frame from FFmpeg software - // Populate chroma buffer from both channels with interleaving. - const std::size_t half_width = frame_width / 2; - u8* chroma_buffer_data = chroma_buffer.data(); - const u8* chroma_b_src = frame->GetData(1); - const u8* chroma_r_src = frame->GetData(2); - for (std::size_t y = 0; y < half_height; ++y) { - const std::size_t src = y * half_stride; - const std::size_t dst = y * aligned_width; - for (std::size_t x = 0; x < half_width; ++x) { - chroma_buffer_data[dst + x * 2] = chroma_b_src[src + x]; - chroma_buffer_data[dst + x * 2 + 1] = chroma_r_src[src + x]; + surface_width = std::min(surface_width, out_luma_width); + surface_height = std::min(surface_height, out_luma_height); + + [[maybe_unused]] auto DecodeLinear = [&](std::span<u8> out_luma, std::span<u8> out_chroma) { + for (u32 y = 0; y < surface_height; ++y) { + const auto src_luma = y * surface_stride; + const auto dst_luma = y * out_luma_stride; + const auto src_chroma = y * surface_stride; + const auto dst_chroma = (y / 2) * out_chroma_stride; + for (u32 x = 0; x < surface_width; x += 2) { + out_luma[dst_luma + x + 0] = + static_cast<u8>(output_surface[src_luma + x + 0].r >> 2); + out_luma[dst_luma + x + 1] = + static_cast<u8>(output_surface[src_luma + x + 1].r >> 2); + out_chroma[dst_chroma + x + 0] = + static_cast<u8>(output_surface[src_chroma + x].g >> 2); + out_chroma[dst_chroma + x + 1] = + static_cast<u8>(output_surface[src_chroma + x].b >> 2); } } - break; - } - case AV_PIX_FMT_NV12: { - // Frame from VA-API hardware - // This is already interleaved so just copy - const u8* chroma_src = frame->GetData(1); - for (std::size_t y = 0; y < half_height; ++y) { - const std::size_t src = y * stride; - const std::size_t dst = y * aligned_width; - std::memcpy(chroma_buffer.data() + dst, chroma_src + src, frame_width); + }; + + auto Decode = [&](std::span<u8> out_luma, std::span<u8> out_chroma) { +#if defined(ARCHITECTURE_x86_64) + if (!has_sse41) { + DecodeLinear(out_luma, out_chroma); + return; + } +#endif + +#if defined(ARCHITECTURE_x86_64) || defined(ARCHITECTURE_arm64) + // luma_mask = [00 00] [00 00] [00 00] [FF FF] [00 00] [00 00] [00 00] [FF FF] + const auto luma_mask = _mm_set_epi16(0, 0, 0, -1, 0, 0, 0, -1); + + const auto sse_aligned_width = Common::AlignDown(surface_width, 16); + + for (u32 y = 0; y < surface_height; ++y) { + const auto src = y * surface_stride; + const auto dst_luma = y * out_luma_stride; + const auto dst_chroma = (y / 2) * out_chroma_stride; + u32 x = 0; + for (; x < sse_aligned_width; x += 16) { + // clang-format off + // Prefetch the next cache lines, 2 per iteration + _mm_prefetch((const char*)&output_surface[src + x + 16], _MM_HINT_T0); + _mm_prefetch((const char*)&output_surface[src + x + 24], _MM_HINT_T0); + + // Load the 64-bit pixels, 2 per variable. + auto pixel01 = _mm_load_si128((__m128i*)&output_surface[src + x + 0]); + auto pixel23 = _mm_load_si128((__m128i*)&output_surface[src + x + 2]); + auto pixel45 = _mm_load_si128((__m128i*)&output_surface[src + x + 4]); + auto pixel67 = _mm_load_si128((__m128i*)&output_surface[src + x + 6]); + auto pixel89 = _mm_load_si128((__m128i*)&output_surface[src + x + 8]); + auto pixel1011 = _mm_load_si128((__m128i*)&output_surface[src + x + 10]); + auto pixel1213 = _mm_load_si128((__m128i*)&output_surface[src + x + 12]); + auto pixel1415 = _mm_load_si128((__m128i*)&output_surface[src + x + 14]); + + // Split out the luma of each pixel using the luma_mask above. + // pixel01 = [AA2 AA2] [VV2 VV2] [UU2 UU2] [LL2 LL2] [AA1 AA1] [VV1 VV1] [UU1 UU1] [LL1 LL1] + // -> + // l01 = [002 002] [002 002] [002 002] [LL2 LL2] [001 001] [001 001] [001 001] [LL1 LL1] + auto l01 = _mm_and_si128(pixel01, luma_mask); + auto l23 = _mm_and_si128(pixel23, luma_mask); + auto l45 = _mm_and_si128(pixel45, luma_mask); + auto l67 = _mm_and_si128(pixel67, luma_mask); + auto l89 = _mm_and_si128(pixel89, luma_mask); + auto l1011 = _mm_and_si128(pixel1011, luma_mask); + auto l1213 = _mm_and_si128(pixel1213, luma_mask); + auto l1415 = _mm_and_si128(pixel1415, luma_mask); + + // Pack 32-bit elements from 2 registers down into 16-bit elements in 1 register. + // l01 = [002 002 002 002] [002 002 LL2 LL2] [001 001 001 001] [001 001 LL1 LL1] + // l23 = [004 004 004 004] [004 004 LL4 LL4] [003 003 003 003] [003 003 LL3 LL3] + // -> + // l0123 = [004 004] [LL4 LL4] [003 003] [LL3 LL3] [002 002] [LL2 LL2] [001 001] [LL1 LL1] + auto l0123 = _mm_packus_epi32(l01, l23); + auto l4567 = _mm_packus_epi32(l45, l67); + auto l891011 = _mm_packus_epi32(l89, l1011); + auto l12131415 = _mm_packus_epi32(l1213, l1415); + + // Pack 32-bit elements from 2 registers down into 16-bit elements in 1 register. + // l0123 = [004 004 LL4 LL4] [003 003 LL3 LL3] [002 002 LL2 LL2] [001 001 LL1 LL1] + // l4567 = [008 008 LL8 LL8] [007 007 LL7 LL7] [006 006 LL6 LL6] [005 005 LL5 LL5] + // -> + // luma_lo = [LL8 LL8] [LL7 LL7] [LL6 LL6] [LL5 LL5] [LL4 LL4] [LL3 LL3] [LL2 LL2] [LL1 LL1] + auto luma_lo = _mm_packus_epi32(l0123, l4567); + auto luma_hi = _mm_packus_epi32(l891011, l12131415); + + // Right-shift the 16-bit elements by 2, un-doing the left shift by 2 on read + // and bringing the range back to 8-bit. + luma_lo = _mm_srli_epi16(luma_lo, 2); + luma_hi = _mm_srli_epi16(luma_hi, 2); + + // Pack with unsigned saturation the 16-bit values in 2 registers into 8-bit values in 1 register. + // luma_lo = [LL8 LL8] [LL7 LL7] [LL6 LL6] [LL5 LL5] [LL4 LL4] [LL3 LL3] [LL2 LL2] [LL1 LL1] + // luma_hi = [LL16 LL16] [LL15 LL15] [LL14 LL14] [LL13 LL13] [LL12 LL12] [LL11 LL11] [LL10 LL10] [LL9 LL9] + // -> + // luma = [LL16] [LL15] [LL14] [LL13] [LL12] [LL11] [LL10] [LL9] [LL8] [LL7] [LL6] [LL5] [LL4] [LL3] [LL2] [LL1] + auto luma = _mm_packus_epi16(luma_lo, luma_hi); + + // Store the 16 bytes of luma + _mm_store_si128((__m128i*)&out_luma[dst_luma + x], luma); + + if (y % 2 == 0) { + // Chroma, done every other line as it's half the height of luma. + + // Shift the register right by 2 bytes (not bits), to kick out the 16-bit luma. + // We can do this instead of &'ing a mask and then shifting. + // pixel01 = [AA2 AA2] [VV2 VV2] [UU2 UU2] [LL2 LL2] [AA1 AA1] [VV1 VV1] [UU1 UU1] [LL1 LL1] + // -> + // c01 = [ 00 00] [AA2 AA2] [VV2 VV2] [UU2 UU2] [LL2 LL2] [AA1 AA1] [VV1 VV1] [UU1 UU1] + auto c01 = _mm_srli_si128(pixel01, 2); + auto c23 = _mm_srli_si128(pixel23, 2); + auto c45 = _mm_srli_si128(pixel45, 2); + auto c67 = _mm_srli_si128(pixel67, 2); + auto c89 = _mm_srli_si128(pixel89, 2); + auto c1011 = _mm_srli_si128(pixel1011, 2); + auto c1213 = _mm_srli_si128(pixel1213, 2); + auto c1415 = _mm_srli_si128(pixel1415, 2); + + // Interleave the lower 8 bytes as 32-bit elements from 2 registers into 1 register. + // This has the effect of skipping every other chroma value horitonally, + // notice the high pixels UU2/UU4 are skipped. + // This is intended as N420 chroma width is half the luma width. + // c01 = [ 00 00 AA2 AA2] [VV2 VV2 UU2 UU2] [LL2 LL2 AA1 AA1] [VV1 VV1 UU1 UU1] + // c23 = [ 00 00 AA4 AA4] [VV4 VV4 UU4 UU4] [LL4 LL4 AA3 AA3] [VV3 VV3 UU3 UU3] + // -> + // c0123 = [LL4 LL4 AA3 AA3] [LL2 LL2 AA1 AA1] [VV3 VV3 UU3 UU3] [VV1 VV1 UU1 UU1] + auto c0123 = _mm_unpacklo_epi32(c01, c23); + auto c4567 = _mm_unpacklo_epi32(c45, c67); + auto c891011 = _mm_unpacklo_epi32(c89, c1011); + auto c12131415 = _mm_unpacklo_epi32(c1213, c1415); + + // Interleave the low 64-bit elements from 2 registers into 1. + // c0123 = [LL4 LL4 AA3 AA3 LL2 LL2 AA1 AA1] [VV3 VV3 UU3 UU3 VV1 VV1 UU1 UU1] + // c4567 = [LL8 LL8 AA7 AA7 LL6 LL6 AA5 AA5] [VV7 VV7 UU7 UU7 VV5 VV5 UU5 UU5] + // -> + // chroma_lo = [VV7 VV7 UU7 UU7 VV5 VV5 UU5 UU5] [VV3 VV3 UU3 UU3 VV1 VV1 UU1 UU1] + auto chroma_lo = _mm_unpacklo_epi64(c0123, c4567); + auto chroma_hi = _mm_unpacklo_epi64(c891011, c12131415); + + // Right-shift the 16-bit elements by 2, un-doing the left shift by 2 on read + // and bringing the range back to 8-bit. + chroma_lo = _mm_srli_epi16(chroma_lo, 2); + chroma_hi = _mm_srli_epi16(chroma_hi, 2); + + // Pack with unsigned saturation the 16-bit elements from 2 registers into 8-bit elements in 1 register. + // chroma_lo = [ VV7 VV7] [ UU7 UU7] [ VV5 VV5] [ UU5 UU5] [ VV3 VV3] [ UU3 UU3] [VV1 VV1] [UU1 UU1] + // chroma_hi = [VV15 VV15] [UU15 UU15] [VV13 VV13] [UU13 UU13] [VV11 VV11] [UU11 UU11] [VV9 VV9] [UU9 UU9] + // -> + // chroma = [VV15] [UU15] [VV13] [UU13] [VV11] [UU11] [VV9] [UU9] [VV7] [UU7] [VV5] [UU5] [VV3] [UU3] [VV1] [UU1] + auto chroma = _mm_packus_epi16(chroma_lo, chroma_hi); + + // Store the 16 bytes of chroma. + _mm_store_si128((__m128i*)&out_chroma[dst_chroma + x + 0], chroma); + } + + // clang-format on + } + + const auto src_chroma = y * surface_stride; + for (; x < surface_width; x += 2) { + out_luma[dst_luma + x + 0] = static_cast<u8>(output_surface[src + x + 0].r >> 2); + out_luma[dst_luma + x + 1] = static_cast<u8>(output_surface[src + x + 1].r >> 2); + out_chroma[dst_chroma + x + 0] = + static_cast<u8>(output_surface[src_chroma + x].g >> 2); + out_chroma[dst_chroma + x + 1] = + static_cast<u8>(output_surface[src_chroma + x].b >> 2); + } + } +#else + DecodeLinear(out_luma, out_chroma); +#endif + }; + + switch (output_surface_config.out_block_kind) { + case BLK_KIND::GENERIC_16Bx2: { + const u32 block_height = static_cast<u32>(output_surface_config.out_block_height); + const auto out_luma_swizzle_size = Texture::CalculateSize( + true, BytesPerPixel, out_luma_width, out_luma_height, 1, block_height, 0); + const auto out_chroma_swizzle_size = Texture::CalculateSize( + true, BytesPerPixel * 2, out_chroma_width, out_chroma_height, 1, block_height, 0); + + LOG_TRACE( + HW_GPU, + "Writing Y8__V8U8_N420 swizzled frame\n" + "\tinput surface {}x{} stride {} size 0x{:X}\n" + "\toutput luma {}x{} stride {} size 0x{:X} block height {} swizzled size 0x{:X}\n", + "\toutput chroma {}x{} stride {} size 0x{:X} block height {} swizzled size 0x{:X}", + surface_width, surface_height, surface_stride * BytesPerPixel, + surface_stride * surface_height * BytesPerPixel, out_luma_width, out_luma_height, + out_luma_stride, out_luma_size, block_height, out_luma_swizzle_size, out_chroma_width, + out_chroma_height, out_chroma_stride, out_chroma_size, block_height, + out_chroma_swizzle_size); + + luma_scratch.resize_destructive(out_luma_size); + chroma_scratch.resize_destructive(out_chroma_size); + + Decode(luma_scratch, chroma_scratch); + + Tegra::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::SafeWrite> out_luma( + memory_manager, regs.output_surface.luma.Address(), out_luma_swizzle_size, + &swizzle_scratch); + + if (block_height == 1) { + SwizzleSurface(out_luma, out_luma_stride, luma_scratch, out_luma_stride, + out_luma_height); + } else { + Texture::SwizzleTexture(out_luma, luma_scratch, BytesPerPixel, out_luma_width, + out_luma_height, 1, block_height, 0, 1); } + + Tegra::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::SafeWrite> + out_chroma(memory_manager, regs.output_surface.chroma_u.Address(), + out_chroma_swizzle_size, &swizzle_scratch); + + if (block_height == 1) { + SwizzleSurface(out_chroma, out_chroma_stride, chroma_scratch, out_chroma_stride, + out_chroma_height); + } else { + Texture::SwizzleTexture(out_chroma, chroma_scratch, BytesPerPixel, out_chroma_width, + out_chroma_height, 1, block_height, 0, 1); + } + } break; + case BLK_KIND::PITCH: { + LOG_TRACE( + HW_GPU, + "Writing Y8__V8U8_N420 swizzled frame\n" + "\tinput surface {}x{} stride {} size 0x{:X}\n" + "\toutput luma {}x{} stride {} size 0x{:X} block height {} swizzled size 0x{:X}\n", + "\toutput chroma {}x{} stride {} size 0x{:X} block height {} swizzled size 0x{:X}", + surface_width, surface_height, surface_stride * BytesPerPixel, + surface_stride * surface_height * BytesPerPixel, out_luma_width, out_luma_height, + out_luma_stride, out_luma_size, out_chroma_width, out_chroma_height, out_chroma_stride, + out_chroma_size); + + // Unfortunately due to a driver bug or game bug, the chroma address can be not + // appropriately spaced from the luma, so the luma of size out_stride * height runs into the + // top of the chroma buffer. Unfortunately that removes an optimisation here where we could + // create guest spans and decode into game memory directly to avoid the memory copy from + // scratch to game. Due to this bug, we must write the luma first, and then the chroma + // afterwards to re-overwrite the luma being too large. + luma_scratch.resize_destructive(out_luma_size); + chroma_scratch.resize_destructive(out_chroma_size); + + Decode(luma_scratch, chroma_scratch); + + memory_manager.WriteBlock(regs.output_surface.luma.Address(), luma_scratch.data(), + out_luma_size); + memory_manager.WriteBlock(regs.output_surface.chroma_u.Address(), chroma_scratch.data(), + out_chroma_size); + } break; + default: + UNREACHABLE(); break; } +} + +template <VideoPixelFormat Format> +void Vic::WriteABGR(const OutputSurfaceConfig& output_surface_config) { + constexpr u32 BytesPerPixel = 4; + + auto surface_width{output_surface_config.out_surface_width + 1}; + auto surface_height{output_surface_config.out_surface_height + 1}; + const auto surface_stride{surface_width}; + + const auto out_luma_width = output_surface_config.out_luma_width + 1; + const auto out_luma_height = output_surface_config.out_luma_height + 1; + const auto out_luma_stride = Common ::AlignUp(out_luma_width * BytesPerPixel, 0x10); + const auto out_luma_size = out_luma_height * out_luma_stride; + + surface_width = std::min(surface_width, out_luma_width); + surface_height = std::min(surface_height, out_luma_height); + + [[maybe_unused]] auto DecodeLinear = [&](std::span<u8> out_buffer) { + for (u32 y = 0; y < surface_height; y++) { + const auto src = y * surface_stride; + const auto dst = y * out_luma_stride; + for (u32 x = 0; x < surface_width; x++) { + if constexpr (Format == VideoPixelFormat::A8R8G8B8) { + out_buffer[dst + x * 4 + 0] = static_cast<u8>(output_surface[src + x].b >> 2); + out_buffer[dst + x * 4 + 1] = static_cast<u8>(output_surface[src + x].g >> 2); + out_buffer[dst + x * 4 + 2] = static_cast<u8>(output_surface[src + x].r >> 2); + out_buffer[dst + x * 4 + 3] = static_cast<u8>(output_surface[src + x].a >> 2); + } else { + out_buffer[dst + x * 4 + 0] = static_cast<u8>(output_surface[src + x].r >> 2); + out_buffer[dst + x * 4 + 1] = static_cast<u8>(output_surface[src + x].g >> 2); + out_buffer[dst + x * 4 + 2] = static_cast<u8>(output_surface[src + x].b >> 2); + out_buffer[dst + x * 4 + 3] = static_cast<u8>(output_surface[src + x].a >> 2); + } + } + } + }; + + auto Decode = [&](std::span<u8> out_buffer) { +#if defined(ARCHITECTURE_x86_64) + if (!has_sse41) { + DecodeLinear(out_buffer); + return; + } +#endif + +#if defined(ARCHITECTURE_x86_64) || defined(ARCHITECTURE_arm64) + constexpr size_t SseAlignment = 16; + const auto sse_aligned_width = Common::AlignDown(surface_width, SseAlignment); + + for (u32 y = 0; y < surface_height; y++) { + const auto src = y * surface_stride; + const auto dst = y * out_luma_stride; + u32 x = 0; + for (; x < sse_aligned_width; x += SseAlignment) { + // clang-format off + // Prefetch the next 2 cache lines + _mm_prefetch((const char*)&output_surface[src + x + 16], _MM_HINT_T0); + _mm_prefetch((const char*)&output_surface[src + x + 24], _MM_HINT_T0); + + // Load the pixels, 16-bit channels, 8 bytes per pixel, e.g + // pixel01 = [AA AA BB BB GG GG RR RR AA AA BB BB GG GG RR RR + auto pixel01 = _mm_load_si128((__m128i*)&output_surface[src + x + 0]); + auto pixel23 = _mm_load_si128((__m128i*)&output_surface[src + x + 2]); + auto pixel45 = _mm_load_si128((__m128i*)&output_surface[src + x + 4]); + auto pixel67 = _mm_load_si128((__m128i*)&output_surface[src + x + 6]); + auto pixel89 = _mm_load_si128((__m128i*)&output_surface[src + x + 8]); + auto pixel1011 = _mm_load_si128((__m128i*)&output_surface[src + x + 10]); + auto pixel1213 = _mm_load_si128((__m128i*)&output_surface[src + x + 12]); + auto pixel1415 = _mm_load_si128((__m128i*)&output_surface[src + x + 14]); + + // Right-shift the channels by 16 to un-do the left shit on read and bring the range + // back to 8-bit. + pixel01 = _mm_srli_epi16(pixel01, 2); + pixel23 = _mm_srli_epi16(pixel23, 2); + pixel45 = _mm_srli_epi16(pixel45, 2); + pixel67 = _mm_srli_epi16(pixel67, 2); + pixel89 = _mm_srli_epi16(pixel89, 2); + pixel1011 = _mm_srli_epi16(pixel1011, 2); + pixel1213 = _mm_srli_epi16(pixel1213, 2); + pixel1415 = _mm_srli_epi16(pixel1415, 2); + + // Pack with unsigned saturation 16-bit channels from 2 registers into 8-bit channels in 1 register. + // pixel01 = [AA2 AA2] [BB2 BB2] [GG2 GG2] [RR2 RR2] [AA1 AA1] [BB1 BB1] [GG1 GG1] [RR1 RR1] + // pixel23 = [AA4 AA4] [BB4 BB4] [GG4 GG4] [RR4 RR4] [AA3 AA3] [BB3 BB3] [GG3 GG3] [RR3 RR3] + // -> + // pixels0_lo = [AA4] [BB4] [GG4] [RR4] [AA3] [BB3] [GG3] [RR3] [AA2] [BB2] [GG2] [RR2] [AA1] [BB1] [GG1] [RR1] + auto pixels0_lo = _mm_packus_epi16(pixel01, pixel23); + auto pixels0_hi = _mm_packus_epi16(pixel45, pixel67); + auto pixels1_lo = _mm_packus_epi16(pixel89, pixel1011); + auto pixels1_hi = _mm_packus_epi16(pixel1213, pixel1415); + + if constexpr (Format == VideoPixelFormat::A8R8G8B8) { + const auto shuffle = + _mm_set_epi8(15, 12, 13, 14, 11, 8, 9, 10, 7, 4, 5, 6, 3, 0, 1, 2); + + // Our pixels are ABGR (big-endian) by default, if ARGB is needed, we need to shuffle. + // pixels0_lo = [AA4 BB4 GG4 RR4] [AA3 BB3 GG3 RR3] [AA2 BB2 GG2 RR2] [AA1 BB1 GG1 RR1] + // -> + // pixels0_lo = [AA4 RR4 GG4 BB4] [AA3 RR3 GG3 BB3] [AA2 RR2 GG2 BB2] [AA1 RR1 GG1 BB1] + pixels0_lo = _mm_shuffle_epi8(pixels0_lo, shuffle); + pixels0_hi = _mm_shuffle_epi8(pixels0_hi, shuffle); + pixels1_lo = _mm_shuffle_epi8(pixels1_lo, shuffle); + pixels1_hi = _mm_shuffle_epi8(pixels1_hi, shuffle); + } + + // Store the pixels + _mm_store_si128((__m128i*)&out_buffer[dst + x * 4 + 0], pixels0_lo); + _mm_store_si128((__m128i*)&out_buffer[dst + x * 4 + 16], pixels0_hi); + _mm_store_si128((__m128i*)&out_buffer[dst + x * 4 + 32], pixels1_lo); + _mm_store_si128((__m128i*)&out_buffer[dst + x * 4 + 48], pixels1_hi); + + // clang-format on + } + + for (; x < surface_width; x++) { + if constexpr (Format == VideoPixelFormat::A8R8G8B8) { + out_buffer[dst + x * 4 + 0] = static_cast<u8>(output_surface[src + x].b >> 2); + out_buffer[dst + x * 4 + 1] = static_cast<u8>(output_surface[src + x].g >> 2); + out_buffer[dst + x * 4 + 2] = static_cast<u8>(output_surface[src + x].r >> 2); + out_buffer[dst + x * 4 + 3] = static_cast<u8>(output_surface[src + x].a >> 2); + } else { + out_buffer[dst + x * 4 + 0] = static_cast<u8>(output_surface[src + x].r >> 2); + out_buffer[dst + x * 4 + 1] = static_cast<u8>(output_surface[src + x].g >> 2); + out_buffer[dst + x * 4 + 2] = static_cast<u8>(output_surface[src + x].b >> 2); + out_buffer[dst + x * 4 + 3] = static_cast<u8>(output_surface[src + x].a >> 2); + } + } + } +#else + DecodeLinear(out_buffer); +#endif + }; + + switch (output_surface_config.out_block_kind) { + case BLK_KIND::GENERIC_16Bx2: { + const u32 block_height = static_cast<u32>(output_surface_config.out_block_height); + const auto out_swizzle_size = Texture::CalculateSize(true, BytesPerPixel, out_luma_width, + out_luma_height, 1, block_height, 0); + + LOG_TRACE( + HW_GPU, + "Writing ABGR swizzled frame\n" + "\tinput surface {}x{} stride {} size 0x{:X}\n" + "\toutput surface {}x{} stride {} size 0x{:X} block height {} swizzled size 0x{:X}", + surface_width, surface_height, surface_stride * BytesPerPixel, + surface_stride * surface_height * BytesPerPixel, out_luma_width, out_luma_height, + out_luma_stride, out_luma_size, block_height, out_swizzle_size); + + luma_scratch.resize_destructive(out_luma_size); + + Decode(luma_scratch); + + Tegra::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::SafeWrite> out_luma( + memory_manager, regs.output_surface.luma.Address(), out_swizzle_size, &swizzle_scratch); + + if (block_height == 1) { + SwizzleSurface(out_luma, out_luma_stride, luma_scratch, out_luma_stride, + out_luma_height); + } else { + Texture::SwizzleTexture(out_luma, luma_scratch, BytesPerPixel, out_luma_width, + out_luma_height, 1, block_height, 0, 1); + } + + } break; + case BLK_KIND::PITCH: { + LOG_TRACE(HW_GPU, + "Writing ABGR pitch frame\n" + "\tinput surface {}x{} stride {} size 0x{:X}" + "\toutput surface {}x{} stride {} size 0x{:X}", + surface_width, surface_height, surface_stride, + surface_stride * surface_height * BytesPerPixel, out_luma_width, out_luma_height, + out_luma_stride, out_luma_size); + + luma_scratch.resize_destructive(out_luma_size); + + Tegra::Memory::GpuGuestMemoryScoped<u8, Core::Memory::GuestMemoryFlags::SafeWrite> out_luma( + memory_manager, regs.output_surface.luma.Address(), out_luma_size, &luma_scratch); + + Decode(out_luma); + } break; default: - ASSERT(false); + UNREACHABLE(); break; } - host1x.GMMU().WriteBlock(output_surface_chroma_address, chroma_buffer.data(), - chroma_buffer.size()); } -} // namespace Host1x - -} // namespace Tegra +} // namespace Tegra::Host1x |