aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/core_timing.cpp
blob: 1abfa920c4d4ff6df28c6da56e1da871840072c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>

#ifdef _WIN32
#include "common/windows/timer_resolution.h"
#endif

#ifdef ARCHITECTURE_x86_64
#include "common/x64/cpu_wait.h"
#endif

#include "common/microprofile.h"
#include "core/core_timing.h"
#include "core/hardware_properties.h"

namespace Core::Timing {

constexpr s64 MAX_SLICE_LENGTH = 10000;

std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
    return std::make_shared<EventType>(std::move(callback), std::move(name));
}

struct CoreTiming::Event {
    s64 time;
    u64 fifo_order;
    std::weak_ptr<EventType> type;
    s64 reschedule_time;
    heap_t::handle_type handle{};

    // Sort by time, unless the times are the same, in which case sort by
    // the order added to the queue
    friend bool operator>(const Event& left, const Event& right) {
        return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
    }

    friend bool operator<(const Event& left, const Event& right) {
        return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
    }
};

CoreTiming::CoreTiming() : clock{Common::CreateOptimalClock()} {}

CoreTiming::~CoreTiming() {
    Reset();
}

void CoreTiming::ThreadEntry(CoreTiming& instance) {
    static constexpr char name[] = "HostTiming";
    MicroProfileOnThreadCreate(name);
    Common::SetCurrentThreadName(name);
    Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
    instance.on_thread_init();
    instance.ThreadLoop();
    MicroProfileOnThreadExit();
}

void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
    Reset();
    on_thread_init = std::move(on_thread_init_);
    event_fifo_id = 0;
    shutting_down = false;
    cpu_ticks = 0;
    if (is_multicore) {
        timer_thread = std::make_unique<std::jthread>(ThreadEntry, std::ref(*this));
    }
}

void CoreTiming::ClearPendingEvents() {
    std::scoped_lock lock{advance_lock, basic_lock};
    event_queue.clear();
    event.Set();
}

void CoreTiming::Pause(bool is_paused) {
    paused = is_paused;
    pause_event.Set();

    if (!is_paused) {
        pause_end_time = GetGlobalTimeNs().count();
    }
}

void CoreTiming::SyncPause(bool is_paused) {
    if (is_paused == paused && paused_set == paused) {
        return;
    }

    Pause(is_paused);
    if (timer_thread) {
        if (!is_paused) {
            pause_event.Set();
        }
        event.Set();
        while (paused_set != is_paused)
            ;
    }

    if (!is_paused) {
        pause_end_time = GetGlobalTimeNs().count();
    }
}

bool CoreTiming::IsRunning() const {
    return !paused_set;
}

bool CoreTiming::HasPendingEvents() const {
    std::scoped_lock lock{basic_lock};
    return !(wait_set && event_queue.empty());
}

void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
                               const std::shared_ptr<EventType>& event_type, bool absolute_time) {
    {
        std::scoped_lock scope{basic_lock};
        const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};

        auto h{event_queue.emplace(Event{next_time.count(), event_fifo_id++, event_type, 0})};
        (*h).handle = h;
    }

    event.Set();
}

void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
                                      std::chrono::nanoseconds resched_time,
                                      const std::shared_ptr<EventType>& event_type,
                                      bool absolute_time) {
    {
        std::scoped_lock scope{basic_lock};
        const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time};

        auto h{event_queue.emplace(
            Event{next_time.count(), event_fifo_id++, event_type, resched_time.count()})};
        (*h).handle = h;
    }

    event.Set();
}

void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
                                 UnscheduleEventType type) {
    {
        std::scoped_lock lk{basic_lock};

        std::vector<heap_t::handle_type> to_remove;
        for (auto itr = event_queue.begin(); itr != event_queue.end(); itr++) {
            const Event& e = *itr;
            if (e.type.lock().get() == event_type.get()) {
                to_remove.push_back(itr->handle);
            }
        }

        for (auto& h : to_remove) {
            event_queue.erase(h);
        }

        event_type->sequence_number++;
    }

    // Force any in-progress events to finish
    if (type == UnscheduleEventType::Wait) {
        std::scoped_lock lk{advance_lock};
    }
}

void CoreTiming::AddTicks(u64 ticks_to_add) {
    cpu_ticks += ticks_to_add;
    downcount -= static_cast<s64>(cpu_ticks);
}

void CoreTiming::Idle() {
    cpu_ticks += 1000U;
}

void CoreTiming::ResetTicks() {
    downcount = MAX_SLICE_LENGTH;
}

u64 CoreTiming::GetClockTicks() const {
    if (is_multicore) [[likely]] {
        return clock->GetCNTPCT();
    }
    return Common::WallClock::CPUTickToCNTPCT(cpu_ticks);
}

u64 CoreTiming::GetGPUTicks() const {
    if (is_multicore) [[likely]] {
        return clock->GetGPUTick();
    }
    return Common::WallClock::CPUTickToGPUTick(cpu_ticks);
}

std::optional<s64> CoreTiming::Advance() {
    std::scoped_lock lock{advance_lock, basic_lock};
    global_timer = GetGlobalTimeNs().count();

    while (!event_queue.empty() && event_queue.top().time <= global_timer) {
        const Event& evt = event_queue.top();

        if (const auto event_type{evt.type.lock()}) {
            const auto evt_time = evt.time;
            const auto evt_sequence_num = event_type->sequence_number;

            if (evt.reschedule_time == 0) {
                event_queue.pop();

                basic_lock.unlock();

                event_type->callback(
                    evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time});

                basic_lock.lock();
            } else {
                basic_lock.unlock();

                const auto new_schedule_time{event_type->callback(
                    evt_time, std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt_time})};

                basic_lock.lock();

                if (evt_sequence_num != event_type->sequence_number) {
                    // Heap handle is invalidated after external modification.
                    continue;
                }

                const auto next_schedule_time{new_schedule_time.has_value()
                                                  ? new_schedule_time.value().count()
                                                  : evt.reschedule_time};

                // If this event was scheduled into a pause, its time now is going to be way
                // behind. Re-set this event to continue from the end of the pause.
                auto next_time{evt.time + next_schedule_time};
                if (evt.time < pause_end_time) {
                    next_time = pause_end_time + next_schedule_time;
                }

                event_queue.update(evt.handle, Event{next_time, event_fifo_id++, evt.type,
                                                     next_schedule_time, evt.handle});
            }
        }

        global_timer = GetGlobalTimeNs().count();
    }

    if (!event_queue.empty()) {
        return event_queue.top().time;
    } else {
        return std::nullopt;
    }
}

void CoreTiming::ThreadLoop() {
    has_started = true;
    while (!shutting_down) {
        while (!paused) {
            paused_set = false;
            const auto next_time = Advance();
            if (next_time) {
                // There are more events left in the queue, wait until the next event.
                auto wait_time = *next_time - GetGlobalTimeNs().count();
                if (wait_time > 0) {
#ifdef _WIN32
                    while (!paused && !event.IsSet() && wait_time > 0) {
                        wait_time = *next_time - GetGlobalTimeNs().count();
                        if (wait_time >= timer_resolution_ns) {
                            Common::Windows::SleepForOneTick();
                        } else {
#ifdef ARCHITECTURE_x86_64
                            Common::X64::MicroSleep();
#else
                            std::this_thread::yield();
#endif
                        }
                    }

                    if (event.IsSet()) {
                        event.Reset();
                    }
#else
                    event.WaitFor(std::chrono::nanoseconds(wait_time));
#endif
                }
            } else {
                // Queue is empty, wait until another event is scheduled and signals us to
                // continue.
                wait_set = true;
                event.Wait();
            }
            wait_set = false;
        }

        paused_set = true;
        pause_event.Wait();
    }
}

void CoreTiming::Reset() {
    paused = true;
    shutting_down = true;
    pause_event.Set();
    event.Set();
    if (timer_thread) {
        timer_thread->join();
    }
    timer_thread.reset();
    has_started = false;
}

std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
    if (is_multicore) [[likely]] {
        return clock->GetTimeNS();
    }
    return std::chrono::nanoseconds{Common::WallClock::CPUTickToNS(cpu_ticks)};
}

std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
    if (is_multicore) [[likely]] {
        return clock->GetTimeUS();
    }
    return std::chrono::microseconds{Common::WallClock::CPUTickToUS(cpu_ticks)};
}

#ifdef _WIN32
void CoreTiming::SetTimerResolutionNs(std::chrono::nanoseconds ns) {
    timer_resolution_ns = ns.count();
}
#endif

} // namespace Core::Timing