aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/hle/kernel/address_arbiter.cpp
blob: b882eaa0ff25f9a13b424adf66443739a01507b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <vector>

#include "common/assert.h"
#include "common/common_types.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h"
#include "core/memory.h"

namespace Kernel {

// Wake up num_to_wake (or all) threads in a vector.
void AddressArbiter::WakeThreads(const std::vector<std::shared_ptr<Thread>>& waiting_threads,
                                 s32 num_to_wake) {
    // Only process up to 'target' threads, unless 'target' is <= 0, in which case process
    // them all.
    std::size_t last = waiting_threads.size();
    if (num_to_wake > 0) {
        last = std::min(last, static_cast<std::size_t>(num_to_wake));
    }

    // Signal the waiting threads.
    for (std::size_t i = 0; i < last; i++) {
        waiting_threads[i]->SetSynchronizationResults(nullptr, RESULT_SUCCESS);
        RemoveThread(waiting_threads[i]);
        waiting_threads[i]->WaitForArbitration(false);
        waiting_threads[i]->ResumeFromWait();
    }
}

AddressArbiter::AddressArbiter(Core::System& system) : system{system} {}
AddressArbiter::~AddressArbiter() = default;

ResultCode AddressArbiter::SignalToAddress(VAddr address, SignalType type, s32 value,
                                           s32 num_to_wake) {
    switch (type) {
    case SignalType::Signal:
        return SignalToAddressOnly(address, num_to_wake);
    case SignalType::IncrementAndSignalIfEqual:
        return IncrementAndSignalToAddressIfEqual(address, value, num_to_wake);
    case SignalType::ModifyByWaitingCountAndSignalIfEqual:
        return ModifyByWaitingCountAndSignalToAddressIfEqual(address, value, num_to_wake);
    default:
        return ERR_INVALID_ENUM_VALUE;
    }
}

ResultCode AddressArbiter::SignalToAddressOnly(VAddr address, s32 num_to_wake) {
    SchedulerLock lock(system.Kernel());
    const std::vector<std::shared_ptr<Thread>> waiting_threads =
        GetThreadsWaitingOnAddress(address);
    WakeThreads(waiting_threads, num_to_wake);
    return RESULT_SUCCESS;
}

ResultCode AddressArbiter::IncrementAndSignalToAddressIfEqual(VAddr address, s32 value,
                                                              s32 num_to_wake) {
    SchedulerLock lock(system.Kernel());
    auto& memory = system.Memory();

    // Ensure that we can write to the address.
    if (!memory.IsValidVirtualAddress(address)) {
        return ERR_INVALID_ADDRESS_STATE;
    }

    const std::size_t current_core = system.CurrentCoreIndex();
    auto& monitor = system.Monitor();
    u32 current_value;
    do {
        current_value = monitor.ExclusiveRead32(current_core, address);

        if (current_value != static_cast<u32>(value)) {
            return ERR_INVALID_STATE;
        }
        current_value++;
    } while (!monitor.ExclusiveWrite32(current_core, address, current_value));

    return SignalToAddressOnly(address, num_to_wake);
}

ResultCode AddressArbiter::ModifyByWaitingCountAndSignalToAddressIfEqual(VAddr address, s32 value,
                                                                         s32 num_to_wake) {
    SchedulerLock lock(system.Kernel());
    auto& memory = system.Memory();

    // Ensure that we can write to the address.
    if (!memory.IsValidVirtualAddress(address)) {
        return ERR_INVALID_ADDRESS_STATE;
    }

    // Get threads waiting on the address.
    const std::vector<std::shared_ptr<Thread>> waiting_threads =
        GetThreadsWaitingOnAddress(address);

    const std::size_t current_core = system.CurrentCoreIndex();
    auto& monitor = system.Monitor();
    s32 updated_value;
    do {
        updated_value = monitor.ExclusiveRead32(current_core, address);

        if (updated_value != value) {
            return ERR_INVALID_STATE;
        }
        // Determine the modified value depending on the waiting count.
        if (num_to_wake <= 0) {
            if (waiting_threads.empty()) {
                updated_value = value + 1;
            } else {
                updated_value = value - 1;
            }
        } else {
            if (waiting_threads.empty()) {
                updated_value = value + 1;
            } else if (waiting_threads.size() <= static_cast<u32>(num_to_wake)) {
                updated_value = value - 1;
            } else {
                updated_value = value;
            }
        }
    } while (!monitor.ExclusiveWrite32(current_core, address, updated_value));

    WakeThreads(waiting_threads, num_to_wake);
    return RESULT_SUCCESS;
}

ResultCode AddressArbiter::WaitForAddress(VAddr address, ArbitrationType type, s32 value,
                                          s64 timeout_ns) {
    switch (type) {
    case ArbitrationType::WaitIfLessThan:
        return WaitForAddressIfLessThan(address, value, timeout_ns, false);
    case ArbitrationType::DecrementAndWaitIfLessThan:
        return WaitForAddressIfLessThan(address, value, timeout_ns, true);
    case ArbitrationType::WaitIfEqual:
        return WaitForAddressIfEqual(address, value, timeout_ns);
    default:
        return ERR_INVALID_ENUM_VALUE;
    }
}

ResultCode AddressArbiter::WaitForAddressIfLessThan(VAddr address, s32 value, s64 timeout,
                                                    bool should_decrement) {
    auto& memory = system.Memory();
    auto& kernel = system.Kernel();
    Thread* current_thread = system.CurrentScheduler().GetCurrentThread();

    Handle event_handle = InvalidHandle;
    {
        SchedulerLockAndSleep lock(kernel, event_handle, current_thread, timeout);

        if (current_thread->IsPendingTermination()) {
            lock.CancelSleep();
            return ERR_THREAD_TERMINATING;
        }

        // Ensure that we can read the address.
        if (!memory.IsValidVirtualAddress(address)) {
            lock.CancelSleep();
            return ERR_INVALID_ADDRESS_STATE;
        }

        s32 current_value = static_cast<s32>(memory.Read32(address));
        if (current_value >= value) {
            lock.CancelSleep();
            return ERR_INVALID_STATE;
        }

        current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);

        s32 decrement_value;

        const std::size_t current_core = system.CurrentCoreIndex();
        auto& monitor = system.Monitor();
        do {
            current_value = static_cast<s32>(monitor.ExclusiveRead32(current_core, address));
            if (should_decrement) {
                decrement_value = current_value - 1;
            } else {
                decrement_value = current_value;
            }
        } while (
            !monitor.ExclusiveWrite32(current_core, address, static_cast<u32>(decrement_value)));

        // Short-circuit without rescheduling, if timeout is zero.
        if (timeout == 0) {
            lock.CancelSleep();
            return RESULT_TIMEOUT;
        }

        current_thread->SetArbiterWaitAddress(address);
        InsertThread(SharedFrom(current_thread));
        current_thread->SetStatus(ThreadStatus::WaitArb);
        current_thread->WaitForArbitration(true);
    }

    if (event_handle != InvalidHandle) {
        auto& time_manager = kernel.TimeManager();
        time_manager.UnscheduleTimeEvent(event_handle);
    }

    {
        SchedulerLock lock(kernel);
        if (current_thread->IsWaitingForArbitration()) {
            RemoveThread(SharedFrom(current_thread));
            current_thread->WaitForArbitration(false);
        }
    }

    return current_thread->GetSignalingResult();
}

ResultCode AddressArbiter::WaitForAddressIfEqual(VAddr address, s32 value, s64 timeout) {
    auto& memory = system.Memory();
    auto& kernel = system.Kernel();
    Thread* current_thread = system.CurrentScheduler().GetCurrentThread();

    Handle event_handle = InvalidHandle;
    {
        SchedulerLockAndSleep lock(kernel, event_handle, current_thread, timeout);

        if (current_thread->IsPendingTermination()) {
            lock.CancelSleep();
            return ERR_THREAD_TERMINATING;
        }

        // Ensure that we can read the address.
        if (!memory.IsValidVirtualAddress(address)) {
            lock.CancelSleep();
            return ERR_INVALID_ADDRESS_STATE;
        }

        s32 current_value = static_cast<s32>(memory.Read32(address));
        if (current_value != value) {
            lock.CancelSleep();
            return ERR_INVALID_STATE;
        }

        // Short-circuit without rescheduling, if timeout is zero.
        if (timeout == 0) {
            lock.CancelSleep();
            return RESULT_TIMEOUT;
        }

        current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
        current_thread->SetArbiterWaitAddress(address);
        InsertThread(SharedFrom(current_thread));
        current_thread->SetStatus(ThreadStatus::WaitArb);
        current_thread->WaitForArbitration(true);
    }

    if (event_handle != InvalidHandle) {
        auto& time_manager = kernel.TimeManager();
        time_manager.UnscheduleTimeEvent(event_handle);
    }

    {
        SchedulerLock lock(kernel);
        if (current_thread->IsWaitingForArbitration()) {
            RemoveThread(SharedFrom(current_thread));
            current_thread->WaitForArbitration(false);
        }
    }

    return current_thread->GetSignalingResult();
}

void AddressArbiter::HandleWakeupThread(std::shared_ptr<Thread> thread) {
    ASSERT(thread->GetStatus() == ThreadStatus::WaitArb);
    RemoveThread(thread);
    thread->SetArbiterWaitAddress(0);
}

void AddressArbiter::InsertThread(std::shared_ptr<Thread> thread) {
    const VAddr arb_addr = thread->GetArbiterWaitAddress();
    std::list<std::shared_ptr<Thread>>& thread_list = arb_threads[arb_addr];

    const auto iter =
        std::find_if(thread_list.cbegin(), thread_list.cend(), [&thread](const auto& entry) {
            return entry->GetPriority() >= thread->GetPriority();
        });

    if (iter == thread_list.cend()) {
        thread_list.push_back(std::move(thread));
    } else {
        thread_list.insert(iter, std::move(thread));
    }
}

void AddressArbiter::RemoveThread(std::shared_ptr<Thread> thread) {
    const VAddr arb_addr = thread->GetArbiterWaitAddress();
    std::list<std::shared_ptr<Thread>>& thread_list = arb_threads[arb_addr];

    const auto iter = std::find_if(thread_list.cbegin(), thread_list.cend(),
                                   [&thread](const auto& entry) { return thread == entry; });

    if (iter != thread_list.cend()) {
        thread_list.erase(iter);
    }
}

std::vector<std::shared_ptr<Thread>> AddressArbiter::GetThreadsWaitingOnAddress(
    VAddr address) const {
    const auto iter = arb_threads.find(address);
    if (iter == arb_threads.cend()) {
        return {};
    }

    const std::list<std::shared_ptr<Thread>>& thread_list = iter->second;
    return {thread_list.cbegin(), thread_list.cend()};
}
} // namespace Kernel