aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/hle/service/server_manager.cpp
blob: d1e99b184321935eaa270a82d36f7a762bfc5bf4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "common/scope_exit.h"

#include "core/core.h"
#include "core/hle/kernel/k_client_port.h"
#include "core/hle/kernel/k_client_session.h"
#include "core/hle/kernel/k_event.h"
#include "core/hle/kernel/k_object_name.h"
#include "core/hle/kernel/k_port.h"
#include "core/hle/kernel/k_server_port.h"
#include "core/hle/kernel/k_server_session.h"
#include "core/hle/kernel/k_synchronization_object.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/service/hle_ipc.h"
#include "core/hle/service/ipc_helpers.h"
#include "core/hle/service/server_manager.h"
#include "core/hle/service/sm/sm.h"

namespace Service {

constexpr size_t MaximumWaitObjects = 0x40;

enum HandleType {
    Port,
    Session,
    DeferEvent,
    Event,
};

ServerManager::ServerManager(Core::System& system) : m_system{system}, m_serve_mutex{system} {
    // Initialize event.
    m_event = Kernel::KEvent::Create(system.Kernel());
    m_event->Initialize(nullptr);

    // Register event.
    Kernel::KEvent::Register(system.Kernel(), m_event);
}

ServerManager::~ServerManager() {
    // Signal stop.
    m_stop_source.request_stop();
    m_event->Signal();

    // Wait for processing to stop.
    m_stopped.Wait();
    m_threads.clear();

    // Clean up ports.
    for (const auto& [port, handler] : m_ports) {
        port->Close();
    }

    // Clean up sessions.
    for (const auto& [session, manager] : m_sessions) {
        session->Close();
    }

    for (const auto& request : m_deferrals) {
        request.session->Close();
    }

    // Close event.
    m_event->GetReadableEvent().Close();
    m_event->Close();

    if (m_deferral_event) {
        m_deferral_event->GetReadableEvent().Close();
        // Write event is owned by ServiceManager
    }
}

void ServerManager::RunServer(std::unique_ptr<ServerManager>&& server_manager) {
    server_manager->m_system.RunServer(std::move(server_manager));
}

Result ServerManager::RegisterSession(Kernel::KServerSession* session,
                                      std::shared_ptr<SessionRequestManager> manager) {
    ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);

    // We are taking ownership of the server session, so don't open it.
    // Begin tracking the server session.
    {
        std::scoped_lock ll{m_list_mutex};
        m_sessions.emplace(session, std::move(manager));
    }

    // Signal the wakeup event.
    m_event->Signal();

    R_SUCCEED();
}

Result ServerManager::RegisterNamedService(const std::string& service_name,
                                           std::shared_ptr<SessionRequestHandler>&& handler,
                                           u32 max_sessions) {
    ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);

    // Add the new server to sm:.
    ASSERT(R_SUCCEEDED(
        m_system.ServiceManager().RegisterService(service_name, max_sessions, handler)));

    // Get the registered port.
    auto port = m_system.ServiceManager().GetServicePort(service_name);
    ASSERT(port.Succeeded());

    // Open a new reference to the server port.
    (*port)->GetServerPort().Open();

    // Begin tracking the server port.
    {
        std::scoped_lock ll{m_list_mutex};
        m_ports.emplace(std::addressof((*port)->GetServerPort()), std::move(handler));
    }

    // Signal the wakeup event.
    m_event->Signal();

    R_SUCCEED();
}

Result ServerManager::ManageNamedPort(const std::string& service_name,
                                      std::shared_ptr<SessionRequestHandler>&& handler,
                                      u32 max_sessions) {
    ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);

    // Create a new port.
    auto* port = Kernel::KPort::Create(m_system.Kernel());
    port->Initialize(max_sessions, false, 0);

    // Register the port.
    Kernel::KPort::Register(m_system.Kernel(), port);

    // Ensure that our reference to the port is closed if we fail to register it.
    SCOPE_EXIT({
        port->GetClientPort().Close();
        port->GetServerPort().Close();
    });

    // Register the object name with the kernel.
    R_TRY(Kernel::KObjectName::NewFromName(m_system.Kernel(), std::addressof(port->GetClientPort()),
                                           service_name.c_str()));

    // Open a new reference to the server port.
    port->GetServerPort().Open();

    // Begin tracking the server port.
    {
        std::scoped_lock ll{m_list_mutex};
        m_ports.emplace(std::addressof(port->GetServerPort()), std::move(handler));
    }

    // We succeeded.
    R_SUCCEED();
}

Result ServerManager::ManageDeferral(Kernel::KEvent** out_event) {
    // Create a new event.
    m_deferral_event = Kernel::KEvent::Create(m_system.Kernel());
    ASSERT(m_deferral_event != nullptr);

    // Initialize the event.
    m_deferral_event->Initialize(nullptr);

    // Register the event.
    Kernel::KEvent::Register(m_system.Kernel(), m_deferral_event);

    // Set the output.
    *out_event = m_deferral_event;

    // We succeeded.
    R_SUCCEED();
}

void ServerManager::StartAdditionalHostThreads(const char* name, size_t num_threads) {
    for (size_t i = 0; i < num_threads; i++) {
        auto thread_name = fmt::format("{}:{}", name, i + 1);
        m_threads.emplace_back(m_system.Kernel().RunOnHostCoreThread(
            std::move(thread_name), [&] { this->LoopProcessImpl(); }));
    }
}

Result ServerManager::LoopProcess() {
    SCOPE_EXIT({ m_stopped.Set(); });

    R_RETURN(this->LoopProcessImpl());
}

Result ServerManager::LoopProcessImpl() {
    while (!m_stop_source.stop_requested()) {
        R_TRY(this->WaitAndProcessImpl());
    }

    R_SUCCEED();
}

Result ServerManager::WaitAndProcessImpl() {
    Kernel::KScopedAutoObject<Kernel::KSynchronizationObject> wait_obj;
    HandleType wait_type{};

    // Ensure we are the only thread waiting for this server.
    std::unique_lock sl{m_serve_mutex};

    // If we're done, return before we start waiting.
    R_SUCCEED_IF(m_stop_source.stop_requested());

    // Wait for a tracked object to become signaled.
    {
        s32 num_objs{};
        std::array<HandleType, MaximumWaitObjects> wait_types{};
        std::array<Kernel::KSynchronizationObject*, MaximumWaitObjects> wait_objs{};

        const auto AddWaiter{
            [&](Kernel::KSynchronizationObject* synchronization_object, HandleType type) {
                // Open a new reference to the object.
                synchronization_object->Open();

                // Insert into the list.
                wait_types[num_objs] = type;
                wait_objs[num_objs++] = synchronization_object;
            }};

        {
            std::scoped_lock ll{m_list_mutex};

            // Add all of our ports.
            for (const auto& [port, handler] : m_ports) {
                AddWaiter(port, HandleType::Port);
            }

            // Add all of our sessions.
            for (const auto& [session, manager] : m_sessions) {
                AddWaiter(session, HandleType::Session);
            }
        }

        // Add the deferral wakeup event.
        if (m_deferral_event != nullptr) {
            AddWaiter(std::addressof(m_deferral_event->GetReadableEvent()), HandleType::DeferEvent);
        }

        // Add the wakeup event.
        AddWaiter(std::addressof(m_event->GetReadableEvent()), HandleType::Event);

        // Clean up extra references on exit.
        SCOPE_EXIT({
            for (s32 i = 0; i < num_objs; i++) {
                wait_objs[i]->Close();
            }
        });

        // Wait for a signal.
        s32 out_index{-1};
        R_TRY(Kernel::KSynchronizationObject::Wait(m_system.Kernel(), &out_index, wait_objs.data(),
                                                   num_objs, -1));
        ASSERT(out_index >= 0 && out_index < num_objs);

        // Set the output index.
        wait_obj = wait_objs[out_index];
        wait_type = wait_types[out_index];
    }

    // Process what we just received, temporarily removing the object so it is
    // not processed concurrently by another thread.
    {
        switch (wait_type) {
        case HandleType::Port: {
            // Port signaled.
            auto* port = wait_obj->DynamicCast<Kernel::KServerPort*>();
            std::shared_ptr<SessionRequestHandler> handler;

            // Remove from tracking.
            {
                std::scoped_lock ll{m_list_mutex};
                ASSERT(m_ports.contains(port));
                m_ports.at(port).swap(handler);
                m_ports.erase(port);
            }

            // Allow other threads to serve.
            sl.unlock();

            // Finish.
            R_RETURN(this->OnPortEvent(port, std::move(handler)));
        }
        case HandleType::Session: {
            // Session signaled.
            auto* session = wait_obj->DynamicCast<Kernel::KServerSession*>();
            std::shared_ptr<SessionRequestManager> manager;

            // Remove from tracking.
            {
                std::scoped_lock ll{m_list_mutex};
                ASSERT(m_sessions.contains(session));
                m_sessions.at(session).swap(manager);
                m_sessions.erase(session);
            }

            // Allow other threads to serve.
            sl.unlock();

            // Finish.
            R_RETURN(this->OnSessionEvent(session, std::move(manager)));
        }
        case HandleType::DeferEvent: {
            // Clear event.
            ASSERT(R_SUCCEEDED(m_deferral_event->Clear()));

            // Drain the list of deferrals while we process.
            std::list<RequestState> deferrals;
            {
                std::scoped_lock ll{m_list_mutex};
                m_deferrals.swap(deferrals);
            }

            // Allow other threads to serve.
            sl.unlock();

            // Finish.
            R_RETURN(this->OnDeferralEvent(std::move(deferrals)));
        }
        case HandleType::Event: {
            // Clear event and finish.
            R_RETURN(m_event->Clear());
        }
        default: {
            UNREACHABLE();
        }
        }
    }
}

Result ServerManager::OnPortEvent(Kernel::KServerPort* port,
                                  std::shared_ptr<SessionRequestHandler>&& handler) {
    // Accept a new server session.
    Kernel::KServerSession* session = port->AcceptSession();
    ASSERT(session != nullptr);

    // Create the session manager and install the handler.
    auto manager = std::make_shared<SessionRequestManager>(m_system.Kernel(), *this);
    manager->SetSessionHandler(std::shared_ptr(handler));

    // Track the server session.
    {
        std::scoped_lock ll{m_list_mutex};
        m_ports.emplace(port, std::move(handler));
        m_sessions.emplace(session, std::move(manager));
    }

    // Signal the wakeup event.
    m_event->Signal();

    // We succeeded.
    R_SUCCEED();
}

Result ServerManager::OnSessionEvent(Kernel::KServerSession* session,
                                     std::shared_ptr<SessionRequestManager>&& manager) {
    Result rc{ResultSuccess};

    // Try to receive a message.
    std::shared_ptr<HLERequestContext> context;
    rc = session->ReceiveRequest(&context, manager);

    // If the session has been closed, we're done.
    if (rc == Kernel::ResultSessionClosed) {
        // Close the session.
        session->Close();

        // Finish.
        R_SUCCEED();
    }
    ASSERT(R_SUCCEEDED(rc));

    RequestState request{
        .session = session,
        .context = std::move(context),
        .manager = std::move(manager),
    };

    // Complete the sync request with deferral handling.
    R_RETURN(this->CompleteSyncRequest(std::move(request)));
}

Result ServerManager::CompleteSyncRequest(RequestState&& request) {
    Result rc{ResultSuccess};
    Result service_rc{ResultSuccess};

    // Mark the request as not deferred.
    request.context->SetIsDeferred(false);

    // Complete the request. We have exclusive access to this session.
    service_rc = request.manager->CompleteSyncRequest(request.session, *request.context);

    // If we've been deferred, we're done.
    if (request.context->GetIsDeferred()) {
        // Insert into deferral list.
        std::scoped_lock ll{m_list_mutex};
        m_deferrals.emplace_back(std::move(request));

        // Finish.
        R_SUCCEED();
    }

    // Send the reply.
    rc = request.session->SendReplyHLE();

    // If the session has been closed, we're done.
    if (rc == Kernel::ResultSessionClosed || service_rc == IPC::ResultSessionClosed) {
        // Close the session.
        request.session->Close();

        // Finish.
        R_SUCCEED();
    }

    ASSERT(R_SUCCEEDED(rc));
    ASSERT(R_SUCCEEDED(service_rc));

    // Reinsert the session.
    {
        std::scoped_lock ll{m_list_mutex};
        m_sessions.emplace(request.session, std::move(request.manager));
    }

    // Signal the wakeup event.
    m_event->Signal();

    // We succeeded.
    R_SUCCEED();
}

Result ServerManager::OnDeferralEvent(std::list<RequestState>&& deferrals) {
    ON_RESULT_FAILURE {
        std::scoped_lock ll{m_list_mutex};
        m_deferrals.splice(m_deferrals.end(), deferrals);
    };

    while (!deferrals.empty()) {
        RequestState request = deferrals.front();
        deferrals.pop_front();

        // Try again to complete the request.
        R_TRY(this->CompleteSyncRequest(std::move(request)));
    }

    R_SUCCEED();
}

} // namespace Service