aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/memory.cpp
blob: 7534de01ebddb585acd53869338d4f436caf9f89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <cstring>

#include "common/assert.h"
#include "common/atomic_ops.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/page_table.h"
#include "common/settings.h"
#include "common/swap.h"
#include "core/core.h"
#include "core/device_memory.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/memory.h"
#include "video_core/gpu.h"

namespace Core::Memory {

// Implementation class used to keep the specifics of the memory subsystem hidden
// from outside classes. This also allows modification to the internals of the memory
// subsystem without needing to rebuild all files that make use of the memory interface.
struct Memory::Impl {
    explicit Impl(Core::System& system_) : system{system_} {}

    void SetCurrentPageTable(Kernel::KProcess& process, u32 core_id) {
        current_page_table = &process.PageTable().PageTableImpl();
        current_page_table->fastmem_arena = system.DeviceMemory().buffer.VirtualBasePointer();

        const std::size_t address_space_width = process.PageTable().GetAddressSpaceWidth();

        system.ArmInterface(core_id).PageTableChanged(*current_page_table, address_space_width);
    }

    void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
        ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size);
        ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base);
        ASSERT_MSG(target >= DramMemoryMap::Base, "Out of bounds target: {:016X}", target);
        MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, Common::PageType::Memory);

        if (Settings::IsFastmemEnabled()) {
            system.DeviceMemory().buffer.Map(base, target - DramMemoryMap::Base, size);
        }
    }

    void UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) {
        ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size);
        ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base);
        MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, 0, Common::PageType::Unmapped);

        if (Settings::IsFastmemEnabled()) {
            system.DeviceMemory().buffer.Unmap(base, size);
        }
    }

    [[nodiscard]] u8* GetPointerFromRasterizerCachedMemory(VAddr vaddr) const {
        const PAddr paddr{current_page_table->backing_addr[vaddr >> PAGE_BITS]};

        if (!paddr) {
            return {};
        }

        return system.DeviceMemory().GetPointer(paddr) + vaddr;
    }

    u8 Read8(const VAddr addr) {
        return Read<u8>(addr);
    }

    u16 Read16(const VAddr addr) {
        if ((addr & 1) == 0) {
            return Read<u16_le>(addr);
        } else {
            const u32 a{Read<u8>(addr)};
            const u32 b{Read<u8>(addr + sizeof(u8))};
            return static_cast<u16>((b << 8) | a);
        }
    }

    u32 Read32(const VAddr addr) {
        if ((addr & 3) == 0) {
            return Read<u32_le>(addr);
        } else {
            const u32 a{Read16(addr)};
            const u32 b{Read16(addr + sizeof(u16))};
            return (b << 16) | a;
        }
    }

    u64 Read64(const VAddr addr) {
        if ((addr & 7) == 0) {
            return Read<u64_le>(addr);
        } else {
            const u32 a{Read32(addr)};
            const u32 b{Read32(addr + sizeof(u32))};
            return (static_cast<u64>(b) << 32) | a;
        }
    }

    void Write8(const VAddr addr, const u8 data) {
        Write<u8>(addr, data);
    }

    void Write16(const VAddr addr, const u16 data) {
        if ((addr & 1) == 0) {
            Write<u16_le>(addr, data);
        } else {
            Write<u8>(addr, static_cast<u8>(data));
            Write<u8>(addr + sizeof(u8), static_cast<u8>(data >> 8));
        }
    }

    void Write32(const VAddr addr, const u32 data) {
        if ((addr & 3) == 0) {
            Write<u32_le>(addr, data);
        } else {
            Write16(addr, static_cast<u16>(data));
            Write16(addr + sizeof(u16), static_cast<u16>(data >> 16));
        }
    }

    void Write64(const VAddr addr, const u64 data) {
        if ((addr & 7) == 0) {
            Write<u64_le>(addr, data);
        } else {
            Write32(addr, static_cast<u32>(data));
            Write32(addr + sizeof(u32), static_cast<u32>(data >> 32));
        }
    }

    bool WriteExclusive8(const VAddr addr, const u8 data, const u8 expected) {
        return WriteExclusive<u8>(addr, data, expected);
    }

    bool WriteExclusive16(const VAddr addr, const u16 data, const u16 expected) {
        return WriteExclusive<u16_le>(addr, data, expected);
    }

    bool WriteExclusive32(const VAddr addr, const u32 data, const u32 expected) {
        return WriteExclusive<u32_le>(addr, data, expected);
    }

    bool WriteExclusive64(const VAddr addr, const u64 data, const u64 expected) {
        return WriteExclusive<u64_le>(addr, data, expected);
    }

    std::string ReadCString(VAddr vaddr, std::size_t max_length) {
        std::string string;
        string.reserve(max_length);
        for (std::size_t i = 0; i < max_length; ++i) {
            const char c = Read<s8>(vaddr);
            if (c == '\0') {
                break;
            }
            string.push_back(c);
            ++vaddr;
        }
        string.shrink_to_fit();
        return string;
    }

    void WalkBlock(const Kernel::KProcess& process, const VAddr addr, const std::size_t size,
                   auto on_unmapped, auto on_memory, auto on_rasterizer, auto increment) {
        const auto& page_table = process.PageTable().PageTableImpl();
        std::size_t remaining_size = size;
        std::size_t page_index = addr >> PAGE_BITS;
        std::size_t page_offset = addr & PAGE_MASK;

        while (remaining_size) {
            const std::size_t copy_amount =
                std::min(static_cast<std::size_t>(PAGE_SIZE) - page_offset, remaining_size);
            const auto current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);

            const auto [pointer, type] = page_table.pointers[page_index].PointerType();
            switch (type) {
            case Common::PageType::Unmapped: {
                on_unmapped(copy_amount, current_vaddr);
                break;
            }
            case Common::PageType::Memory: {
                DEBUG_ASSERT(pointer);
                u8* mem_ptr = pointer + page_offset + (page_index << PAGE_BITS);
                on_memory(copy_amount, mem_ptr);
                break;
            }
            case Common::PageType::RasterizerCachedMemory: {
                u8* const host_ptr{GetPointerFromRasterizerCachedMemory(current_vaddr)};
                on_rasterizer(current_vaddr, copy_amount, host_ptr);
                break;
            }
            default:
                UNREACHABLE();
            }

            page_index++;
            page_offset = 0;
            increment(copy_amount);
            remaining_size -= copy_amount;
        }
    }

    template <bool UNSAFE>
    void ReadBlockImpl(const Kernel::KProcess& process, const VAddr src_addr, void* dest_buffer,
                       const std::size_t size) {
        WalkBlock(
            process, src_addr, size,
            [src_addr, size, &dest_buffer](const std::size_t copy_amount,
                                           const VAddr current_vaddr) {
                LOG_ERROR(HW_Memory,
                          "Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
                          current_vaddr, src_addr, size);
                std::memset(dest_buffer, 0, copy_amount);
            },
            [&dest_buffer](const std::size_t copy_amount, const u8* const src_ptr) {
                std::memcpy(dest_buffer, src_ptr, copy_amount);
            },
            [&system = system, &dest_buffer](const VAddr current_vaddr,
                                             const std::size_t copy_amount,
                                             const u8* const host_ptr) {
                if constexpr (!UNSAFE) {
                    system.GPU().FlushRegion(current_vaddr, copy_amount);
                }
                std::memcpy(dest_buffer, host_ptr, copy_amount);
            },
            [&dest_buffer](const std::size_t copy_amount) {
                dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
            });
    }

    void ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
        ReadBlockImpl<false>(*system.CurrentProcess(), src_addr, dest_buffer, size);
    }

    void ReadBlockUnsafe(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
        ReadBlockImpl<true>(*system.CurrentProcess(), src_addr, dest_buffer, size);
    }

    template <bool UNSAFE>
    void WriteBlockImpl(const Kernel::KProcess& process, const VAddr dest_addr,
                        const void* src_buffer, const std::size_t size) {
        WalkBlock(
            process, dest_addr, size,
            [dest_addr, size](const std::size_t copy_amount, const VAddr current_vaddr) {
                LOG_ERROR(HW_Memory,
                          "Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
                          current_vaddr, dest_addr, size);
            },
            [&src_buffer](const std::size_t copy_amount, u8* const dest_ptr) {
                std::memcpy(dest_ptr, src_buffer, copy_amount);
            },
            [&system = system, &src_buffer](const VAddr current_vaddr,
                                            const std::size_t copy_amount, u8* const host_ptr) {
                if constexpr (!UNSAFE) {
                    system.GPU().InvalidateRegion(current_vaddr, copy_amount);
                }
                std::memcpy(host_ptr, src_buffer, copy_amount);
            },
            [&src_buffer](const std::size_t copy_amount) {
                src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
            });
    }

    void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
        WriteBlockImpl<false>(*system.CurrentProcess(), dest_addr, src_buffer, size);
    }

    void WriteBlockUnsafe(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
        WriteBlockImpl<true>(*system.CurrentProcess(), dest_addr, src_buffer, size);
    }

    void ZeroBlock(const Kernel::KProcess& process, const VAddr dest_addr, const std::size_t size) {
        WalkBlock(
            process, dest_addr, size,
            [dest_addr, size](const std::size_t copy_amount, const VAddr current_vaddr) {
                LOG_ERROR(HW_Memory,
                          "Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
                          current_vaddr, dest_addr, size);
            },
            [](const std::size_t copy_amount, u8* const dest_ptr) {
                std::memset(dest_ptr, 0, copy_amount);
            },
            [&system = system](const VAddr current_vaddr, const std::size_t copy_amount,
                               u8* const host_ptr) {
                system.GPU().InvalidateRegion(current_vaddr, copy_amount);
                std::memset(host_ptr, 0, copy_amount);
            },
            [](const std::size_t copy_amount) {});
    }

    void CopyBlock(const Kernel::KProcess& process, VAddr dest_addr, VAddr src_addr,
                   const std::size_t size) {
        WalkBlock(
            process, dest_addr, size,
            [this, &process, &dest_addr, &src_addr, size](const std::size_t copy_amount,
                                                          const VAddr current_vaddr) {
                LOG_ERROR(HW_Memory,
                          "Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
                          current_vaddr, src_addr, size);
                ZeroBlock(process, dest_addr, copy_amount);
            },
            [this, &process, &dest_addr](const std::size_t copy_amount, const u8* const src_ptr) {
                WriteBlockImpl<false>(process, dest_addr, src_ptr, copy_amount);
            },
            [this, &system = system, &process, &dest_addr](
                const VAddr current_vaddr, const std::size_t copy_amount, u8* const host_ptr) {
                system.GPU().FlushRegion(current_vaddr, copy_amount);
                WriteBlockImpl<false>(process, dest_addr, host_ptr, copy_amount);
            },
            [&dest_addr, &src_addr](const std::size_t copy_amount) {
                dest_addr += static_cast<VAddr>(copy_amount);
                src_addr += static_cast<VAddr>(copy_amount);
            });
    }

    void RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) {
        if (vaddr == 0) {
            return;
        }

        if (Settings::IsFastmemEnabled()) {
            const bool is_read_enable = Settings::IsGPULevelHigh() || !cached;
            system.DeviceMemory().buffer.Protect(vaddr, size, is_read_enable, !cached);
        }

        // Iterate over a contiguous CPU address space, which corresponds to the specified GPU
        // address space, marking the region as un/cached. The region is marked un/cached at a
        // granularity of CPU pages, hence why we iterate on a CPU page basis (note: GPU page size
        // is different). This assumes the specified GPU address region is contiguous as well.

        const u64 num_pages = ((vaddr + size - 1) >> PAGE_BITS) - (vaddr >> PAGE_BITS) + 1;
        for (u64 i = 0; i < num_pages; ++i, vaddr += PAGE_SIZE) {
            const Common::PageType page_type{
                current_page_table->pointers[vaddr >> PAGE_BITS].Type()};
            if (cached) {
                // Switch page type to cached if now cached
                switch (page_type) {
                case Common::PageType::Unmapped:
                    // It is not necessary for a process to have this region mapped into its address
                    // space, for example, a system module need not have a VRAM mapping.
                    break;
                case Common::PageType::Memory:
                    current_page_table->pointers[vaddr >> PAGE_BITS].Store(
                        nullptr, Common::PageType::RasterizerCachedMemory);
                    break;
                case Common::PageType::RasterizerCachedMemory:
                    // There can be more than one GPU region mapped per CPU region, so it's common
                    // that this area is already marked as cached.
                    break;
                default:
                    UNREACHABLE();
                }
            } else {
                // Switch page type to uncached if now uncached
                switch (page_type) {
                case Common::PageType::Unmapped: // NOLINT(bugprone-branch-clone)
                    // It is not necessary for a process to have this region mapped into its address
                    // space, for example, a system module need not have a VRAM mapping.
                    break;
                case Common::PageType::Memory:
                    // There can be more than one GPU region mapped per CPU region, so it's common
                    // that this area is already unmarked as cached.
                    break;
                case Common::PageType::RasterizerCachedMemory: {
                    u8* const pointer{GetPointerFromRasterizerCachedMemory(vaddr & ~PAGE_MASK)};
                    if (pointer == nullptr) {
                        // It's possible that this function has been called while updating the
                        // pagetable after unmapping a VMA. In that case the underlying VMA will no
                        // longer exist, and we should just leave the pagetable entry blank.
                        current_page_table->pointers[vaddr >> PAGE_BITS].Store(
                            nullptr, Common::PageType::Unmapped);
                    } else {
                        current_page_table->pointers[vaddr >> PAGE_BITS].Store(
                            pointer - (vaddr & ~PAGE_MASK), Common::PageType::Memory);
                    }
                    break;
                }
                default:
                    UNREACHABLE();
                }
            }
        }
    }

    /**
     * Maps a region of pages as a specific type.
     *
     * @param page_table The page table to use to perform the mapping.
     * @param base       The base address to begin mapping at.
     * @param size       The total size of the range in bytes.
     * @param target     The target address to begin mapping from.
     * @param type       The page type to map the memory as.
     */
    void MapPages(Common::PageTable& page_table, VAddr base, u64 size, PAddr target,
                  Common::PageType type) {
        LOG_DEBUG(HW_Memory, "Mapping {:016X} onto {:016X}-{:016X}", target, base * PAGE_SIZE,
                  (base + size) * PAGE_SIZE);

        // During boot, current_page_table might not be set yet, in which case we need not flush
        if (system.IsPoweredOn()) {
            auto& gpu = system.GPU();
            for (u64 i = 0; i < size; i++) {
                const auto page = base + i;
                if (page_table.pointers[page].Type() == Common::PageType::RasterizerCachedMemory) {
                    gpu.FlushAndInvalidateRegion(page << PAGE_BITS, PAGE_SIZE);
                }
            }
        }

        const VAddr end = base + size;
        ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}",
                   base + page_table.pointers.size());

        if (!target) {
            ASSERT_MSG(type != Common::PageType::Memory,
                       "Mapping memory page without a pointer @ {:016x}", base * PAGE_SIZE);

            while (base != end) {
                page_table.pointers[base].Store(nullptr, type);
                page_table.backing_addr[base] = 0;

                base += 1;
            }
        } else {
            while (base != end) {
                page_table.pointers[base].Store(
                    system.DeviceMemory().GetPointer(target) - (base << PAGE_BITS), type);
                page_table.backing_addr[base] = target - (base << PAGE_BITS);

                ASSERT_MSG(page_table.pointers[base].Pointer(),
                           "memory mapping base yield a nullptr within the table");

                base += 1;
                target += PAGE_SIZE;
            }
        }
    }

    [[nodiscard]] u8* GetPointerImpl(VAddr vaddr, auto on_unmapped, auto on_rasterizer) const {
        // AARCH64 masks the upper 16 bit of all memory accesses
        vaddr &= 0xffffffffffffLL;

        if (vaddr >= 1uLL << current_page_table->GetAddressSpaceBits()) {
            on_unmapped();
            return nullptr;
        }

        // Avoid adding any extra logic to this fast-path block
        const uintptr_t raw_pointer = current_page_table->pointers[vaddr >> PAGE_BITS].Raw();
        if (u8* const pointer = Common::PageTable::PageInfo::ExtractPointer(raw_pointer)) {
            return &pointer[vaddr];
        }
        switch (Common::PageTable::PageInfo::ExtractType(raw_pointer)) {
        case Common::PageType::Unmapped:
            on_unmapped();
            return nullptr;
        case Common::PageType::Memory:
            ASSERT_MSG(false, "Mapped memory page without a pointer @ 0x{:016X}", vaddr);
            return nullptr;
        case Common::PageType::RasterizerCachedMemory: {
            u8* const host_ptr{GetPointerFromRasterizerCachedMemory(vaddr)};
            on_rasterizer();
            return host_ptr;
        }
        default:
            UNREACHABLE();
        }
        return nullptr;
    }

    [[nodiscard]] u8* GetPointer(const VAddr vaddr) const {
        return GetPointerImpl(
            vaddr, [vaddr]() { LOG_ERROR(HW_Memory, "Unmapped GetPointer @ 0x{:016X}", vaddr); },
            []() {});
    }

    /**
     * Reads a particular data type out of memory at the given virtual address.
     *
     * @param vaddr The virtual address to read the data type from.
     *
     * @tparam T The data type to read out of memory. This type *must* be
     *           trivially copyable, otherwise the behavior of this function
     *           is undefined.
     *
     * @returns The instance of T read from the specified virtual address.
     */
    template <typename T>
    T Read(VAddr vaddr) {
        T result = 0;
        const u8* const ptr = GetPointerImpl(
            vaddr,
            [vaddr]() {
                LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:016X}", sizeof(T) * 8, vaddr);
            },
            [&system = system, vaddr]() { system.GPU().FlushRegion(vaddr, sizeof(T)); });
        if (ptr) {
            std::memcpy(&result, ptr, sizeof(T));
        }
        return result;
    }

    /**
     * Writes a particular data type to memory at the given virtual address.
     *
     * @param vaddr The virtual address to write the data type to.
     *
     * @tparam T The data type to write to memory. This type *must* be
     *           trivially copyable, otherwise the behavior of this function
     *           is undefined.
     */
    template <typename T>
    void Write(VAddr vaddr, const T data) {
        u8* const ptr = GetPointerImpl(
            vaddr,
            [vaddr, data]() {
                LOG_ERROR(HW_Memory, "Unmapped Write{} @ 0x{:016X} = 0x{:016X}", sizeof(T) * 8,
                          vaddr, static_cast<u64>(data));
            },
            [&system = system, vaddr]() { system.GPU().InvalidateRegion(vaddr, sizeof(T)); });
        if (ptr) {
            std::memcpy(ptr, &data, sizeof(T));
        }
    }

    template <typename T>
    bool WriteExclusive(VAddr vaddr, const T data, const T expected) {
        u8* const ptr = GetPointerImpl(
            vaddr,
            [vaddr, data]() {
                LOG_ERROR(HW_Memory, "Unmapped WriteExclusive{} @ 0x{:016X} = 0x{:016X}",
                          sizeof(T) * 8, vaddr, static_cast<u64>(data));
            },
            [&system = system, vaddr]() { system.GPU().InvalidateRegion(vaddr, sizeof(T)); });
        if (ptr) {
            const auto volatile_pointer = reinterpret_cast<volatile T*>(ptr);
            return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
        }
        return true;
    }

    bool WriteExclusive128(VAddr vaddr, const u128 data, const u128 expected) {
        u8* const ptr = GetPointerImpl(
            vaddr,
            [vaddr, data]() {
                LOG_ERROR(HW_Memory, "Unmapped WriteExclusive128 @ 0x{:016X} = 0x{:016X}{:016X}",
                          vaddr, static_cast<u64>(data[1]), static_cast<u64>(data[0]));
            },
            [&system = system, vaddr]() { system.GPU().InvalidateRegion(vaddr, sizeof(u128)); });
        if (ptr) {
            const auto volatile_pointer = reinterpret_cast<volatile u64*>(ptr);
            return Common::AtomicCompareAndSwap(volatile_pointer, data, expected);
        }
        return true;
    }

    Common::PageTable* current_page_table = nullptr;
    Core::System& system;
};

Memory::Memory(Core::System& system_) : system{system_} {
    Reset();
}

Memory::~Memory() = default;

void Memory::Reset() {
    impl = std::make_unique<Impl>(system);
}

void Memory::SetCurrentPageTable(Kernel::KProcess& process, u32 core_id) {
    impl->SetCurrentPageTable(process, core_id);
}

void Memory::MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, PAddr target) {
    impl->MapMemoryRegion(page_table, base, size, target);
}

void Memory::UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) {
    impl->UnmapRegion(page_table, base, size);
}

bool Memory::IsValidVirtualAddress(const VAddr vaddr) const {
    const Kernel::KProcess& process = *system.CurrentProcess();
    const auto& page_table = process.PageTable().PageTableImpl();
    const size_t page = vaddr >> PAGE_BITS;
    if (page >= page_table.pointers.size()) {
        return false;
    }
    const auto [pointer, type] = page_table.pointers[page].PointerType();
    return pointer != nullptr || type == Common::PageType::RasterizerCachedMemory;
}

bool Memory::IsValidVirtualAddressRange(VAddr base, u64 size) const {
    VAddr end = base + size;
    VAddr page = Common::AlignDown(base, PAGE_SIZE);

    for (; page < end; page += PAGE_SIZE) {
        if (!IsValidVirtualAddress(page)) {
            return false;
        }
    }

    return true;
}

u8* Memory::GetPointer(VAddr vaddr) {
    return impl->GetPointer(vaddr);
}

const u8* Memory::GetPointer(VAddr vaddr) const {
    return impl->GetPointer(vaddr);
}

u8 Memory::Read8(const VAddr addr) {
    return impl->Read8(addr);
}

u16 Memory::Read16(const VAddr addr) {
    return impl->Read16(addr);
}

u32 Memory::Read32(const VAddr addr) {
    return impl->Read32(addr);
}

u64 Memory::Read64(const VAddr addr) {
    return impl->Read64(addr);
}

void Memory::Write8(VAddr addr, u8 data) {
    impl->Write8(addr, data);
}

void Memory::Write16(VAddr addr, u16 data) {
    impl->Write16(addr, data);
}

void Memory::Write32(VAddr addr, u32 data) {
    impl->Write32(addr, data);
}

void Memory::Write64(VAddr addr, u64 data) {
    impl->Write64(addr, data);
}

bool Memory::WriteExclusive8(VAddr addr, u8 data, u8 expected) {
    return impl->WriteExclusive8(addr, data, expected);
}

bool Memory::WriteExclusive16(VAddr addr, u16 data, u16 expected) {
    return impl->WriteExclusive16(addr, data, expected);
}

bool Memory::WriteExclusive32(VAddr addr, u32 data, u32 expected) {
    return impl->WriteExclusive32(addr, data, expected);
}

bool Memory::WriteExclusive64(VAddr addr, u64 data, u64 expected) {
    return impl->WriteExclusive64(addr, data, expected);
}

bool Memory::WriteExclusive128(VAddr addr, u128 data, u128 expected) {
    return impl->WriteExclusive128(addr, data, expected);
}

std::string Memory::ReadCString(VAddr vaddr, std::size_t max_length) {
    return impl->ReadCString(vaddr, max_length);
}

void Memory::ReadBlock(const Kernel::KProcess& process, const VAddr src_addr, void* dest_buffer,
                       const std::size_t size) {
    impl->ReadBlockImpl<false>(process, src_addr, dest_buffer, size);
}

void Memory::ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
    impl->ReadBlock(src_addr, dest_buffer, size);
}

void Memory::ReadBlockUnsafe(const VAddr src_addr, void* dest_buffer, const std::size_t size) {
    impl->ReadBlockUnsafe(src_addr, dest_buffer, size);
}

void Memory::WriteBlock(const Kernel::KProcess& process, VAddr dest_addr, const void* src_buffer,
                        std::size_t size) {
    impl->WriteBlockImpl<false>(process, dest_addr, src_buffer, size);
}

void Memory::WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) {
    impl->WriteBlock(dest_addr, src_buffer, size);
}

void Memory::WriteBlockUnsafe(const VAddr dest_addr, const void* src_buffer,
                              const std::size_t size) {
    impl->WriteBlockUnsafe(dest_addr, src_buffer, size);
}

void Memory::CopyBlock(const Kernel::KProcess& process, VAddr dest_addr, VAddr src_addr,
                       const std::size_t size) {
    impl->CopyBlock(process, dest_addr, src_addr, size);
}

void Memory::RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) {
    impl->RasterizerMarkRegionCached(vaddr, size, cached);
}

} // namespace Core::Memory