1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
// SPDX-FileCopyrightText: 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later
#pragma once
#include <unordered_map>
#include <unordered_set>
#include <queue>
#include "common/common_types.h"
#include "common/address_space.h"
#include "video_core/cdma_pusher.h"
#include "video_core/host1x/gpu_device_memory_manager.h"
#include "video_core/host1x/syncpoint_manager.h"
#include "video_core/memory_manager.h"
namespace Core {
class System;
} // namespace Core
namespace FFmpeg {
class Frame;
} // namespace FFmpeg
namespace Tegra::Host1x {
class Nvdec;
class FrameQueue {
public:
void Open(s32 fd) {
std::scoped_lock l{m_mutex};
m_presentation_order.insert({fd, {}});
m_decode_order.insert({fd, {}});
}
void Close(s32 fd) {
std::scoped_lock l{m_mutex};
m_presentation_order.erase(fd);
m_decode_order.erase(fd);
}
s32 VicFindNvdecFdFromOffset(u64 search_offset) {
std::scoped_lock l{m_mutex};
// Vic does not know which nvdec is producing frames for it, so search all the fds here for
// the given offset.
for (auto& map : m_presentation_order) {
for (auto& [offset, frame] : map.second) {
if (offset == search_offset) {
return map.first;
}
}
}
for (auto& map : m_decode_order) {
for (auto& [offset, frame] : map.second) {
if (offset == search_offset) {
return map.first;
}
}
}
return -1;
}
void PushPresentOrder(s32 fd, u64 offset, std::shared_ptr<FFmpeg::Frame>&& frame) {
std::scoped_lock l{m_mutex};
auto map = m_presentation_order.find(fd);
if (map == m_presentation_order.end()) {
return;
}
map->second.emplace_back(offset, std::move(frame));
}
void PushDecodeOrder(s32 fd, u64 offset, std::shared_ptr<FFmpeg::Frame>&& frame) {
std::scoped_lock l{m_mutex};
auto map = m_decode_order.find(fd);
if (map == m_decode_order.end()) {
return;
}
map->second.insert_or_assign(offset, std::move(frame));
}
std::shared_ptr<FFmpeg::Frame> GetFrame(s32 fd, u64 offset) {
if (fd == -1) {
return {};
}
std::scoped_lock l{m_mutex};
auto present_map = m_presentation_order.find(fd);
if (present_map != m_presentation_order.end() && present_map->second.size() > 0) {
return GetPresentOrderLocked(fd);
}
auto decode_map = m_decode_order.find(fd);
if (decode_map != m_decode_order.end() && decode_map->second.size() > 0) {
return GetDecodeOrderLocked(fd, offset);
}
return {};
}
private:
std::shared_ptr<FFmpeg::Frame> GetPresentOrderLocked(s32 fd) {
auto map = m_presentation_order.find(fd);
if (map == m_presentation_order.end() || map->second.size() == 0) {
return {};
}
auto frame = std::move(map->second.front().second);
map->second.pop_front();
return frame;
}
std::shared_ptr<FFmpeg::Frame> GetDecodeOrderLocked(s32 fd, u64 offset) {
auto map = m_decode_order.find(fd);
if (map == m_decode_order.end() || map->second.size() == 0) {
return {};
}
auto it = map->second.find(offset);
if (it == map->second.end()) {
return {};
}
return std::move(map->second.extract(it).mapped());
}
using FramePtr = std::shared_ptr<FFmpeg::Frame>;
std::mutex m_mutex{};
std::unordered_map<s32, std::deque<std::pair<u64, FramePtr>>> m_presentation_order;
std::unordered_map<s32, std::unordered_map<u64, FramePtr>> m_decode_order;
};
enum class ChannelType : u32 {
MsEnc = 0,
VIC = 1,
GPU = 2,
NvDec = 3,
Display = 4,
NvJpg = 5,
TSec = 6,
Max = 7,
};
class Host1x {
public:
explicit Host1x(Core::System& system);
~Host1x();
Core::System& System() {
return system;
}
SyncpointManager& GetSyncpointManager() {
return syncpoint_manager;
}
const SyncpointManager& GetSyncpointManager() const {
return syncpoint_manager;
}
Tegra::MaxwellDeviceMemoryManager& MemoryManager() {
return memory_manager;
}
const Tegra::MaxwellDeviceMemoryManager& MemoryManager() const {
return memory_manager;
}
Tegra::MemoryManager& GMMU() {
return gmmu_manager;
}
const Tegra::MemoryManager& GMMU() const {
return gmmu_manager;
}
Common::FlatAllocator<u32, 0, 32>& Allocator() {
return *allocator;
}
const Common::FlatAllocator<u32, 0, 32>& Allocator() const {
return *allocator;
}
void StartDevice(s32 fd, ChannelType type, u32 syncpt);
void StopDevice(s32 fd, ChannelType type);
void PushEntries(s32 fd, ChCommandHeaderList&& entries) {
auto it = devices.find(fd);
if (it == devices.end()) {
return;
}
it->second->PushEntries(std::move(entries));
}
private:
Core::System& system;
SyncpointManager syncpoint_manager;
Tegra::MaxwellDeviceMemoryManager memory_manager;
Tegra::MemoryManager gmmu_manager;
std::unique_ptr<Common::FlatAllocator<u32, 0, 32>> allocator;
FrameQueue frame_queue;
std::unordered_map<s32, std::unique_ptr<CDmaPusher>> devices;
};
} // namespace Tegra::Host1x
|