aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/arm/nce/patch.cpp
blob: 30c3c6cdde8ebeaa9190607c03bb92a9df9a49c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "common/arm64/native_clock.h"
#include "common/bit_cast.h"
#include "common/literals.h"
#include "core/arm/nce/arm_nce.h"
#include "core/arm/nce/guest_context.h"
#include "core/arm/nce/instructions.h"
#include "core/arm/nce/patch.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/hle/kernel/svc.h"

namespace Core::NCE {

using namespace Common::Literals;
using namespace oaknut::util;

using NativeExecutionParameters = Kernel::KThread::NativeExecutionParameters;

constexpr size_t MaxRelativeBranch = 128_MiB;
constexpr u32 ModuleCodeIndex = 0x24 / sizeof(u32);

Patcher::Patcher() : c(m_patch_instructions) {}

Patcher::~Patcher() = default;

void Patcher::PatchText(const Kernel::PhysicalMemory& program_image,
                        const Kernel::CodeSet::Segment& code) {

    // Write save context helper function.
    c.l(m_save_context);
    WriteSaveContext();

    // Write load context helper function.
    c.l(m_load_context);
    WriteLoadContext();

    // Retrieve text segment data.
    const auto text = std::span{program_image}.subspan(code.offset, code.size);
    const auto text_words =
        std::span<const u32>{reinterpret_cast<const u32*>(text.data()), text.size() / sizeof(u32)};

    // Loop through instructions, patching as needed.
    for (u32 i = ModuleCodeIndex; i < static_cast<u32>(text_words.size()); i++) {
        const u32 inst = text_words[i];

        const auto AddRelocations = [&] {
            const uintptr_t this_offset = i * sizeof(u32);
            const uintptr_t next_offset = this_offset + sizeof(u32);

            // Relocate from here to patch.
            this->BranchToPatch(this_offset);

            // Relocate from patch to next instruction.
            return next_offset;
        };

        // SVC
        if (auto svc = SVC{inst}; svc.Verify()) {
            WriteSvcTrampoline(AddRelocations(), svc.GetValue());
            continue;
        }

        // MRS Xn, TPIDR_EL0
        // MRS Xn, TPIDRRO_EL0
        if (auto mrs = MRS{inst};
            mrs.Verify() && (mrs.GetSystemReg() == TpidrroEl0 || mrs.GetSystemReg() == TpidrEl0)) {
            const auto src_reg = mrs.GetSystemReg() == TpidrroEl0 ? oaknut::SystemReg::TPIDRRO_EL0
                                                                  : oaknut::SystemReg::TPIDR_EL0;
            const auto dest_reg = oaknut::XReg{static_cast<int>(mrs.GetRt())};
            WriteMrsHandler(AddRelocations(), dest_reg, src_reg);
            continue;
        }

        // MRS Xn, CNTPCT_EL0
        if (auto mrs = MRS{inst}; mrs.Verify() && mrs.GetSystemReg() == CntpctEl0) {
            WriteCntpctHandler(AddRelocations(), oaknut::XReg{static_cast<int>(mrs.GetRt())});
            continue;
        }

        // MRS Xn, CNTFRQ_EL0
        if (auto mrs = MRS{inst}; mrs.Verify() && mrs.GetSystemReg() == CntfrqEl0) {
            UNREACHABLE();
        }

        // MSR TPIDR_EL0, Xn
        if (auto msr = MSR{inst}; msr.Verify() && msr.GetSystemReg() == TpidrEl0) {
            WriteMsrHandler(AddRelocations(), oaknut::XReg{static_cast<int>(msr.GetRt())});
            continue;
        }
    }

    // Determine patching mode for the final relocation step
    const size_t image_size = program_image.size();
    this->mode = image_size > MaxRelativeBranch ? PatchMode::PreText : PatchMode::PostData;
}

void Patcher::RelocateAndCopy(Common::ProcessAddress load_base,
                              const Kernel::CodeSet::Segment& code,
                              Kernel::PhysicalMemory& program_image,
                              EntryTrampolines* out_trampolines) {
    const size_t patch_size = GetSectionSize();
    const size_t image_size = program_image.size();

    // Retrieve text segment data.
    const auto text = std::span{program_image}.subspan(code.offset, code.size);
    const auto text_words =
        std::span<u32>{reinterpret_cast<u32*>(text.data()), text.size() / sizeof(u32)};

    const auto ApplyBranchToPatchRelocation = [&](u32* target, const Relocation& rel) {
        oaknut::CodeGenerator rc{target};
        if (mode == PatchMode::PreText) {
            rc.B(rel.patch_offset - patch_size - rel.module_offset);
        } else {
            rc.B(image_size - rel.module_offset + rel.patch_offset);
        }
    };

    const auto ApplyBranchToModuleRelocation = [&](u32* target, const Relocation& rel) {
        oaknut::CodeGenerator rc{target};
        if (mode == PatchMode::PreText) {
            rc.B(patch_size - rel.patch_offset + rel.module_offset);
        } else {
            rc.B(rel.module_offset - image_size - rel.patch_offset);
        }
    };

    const auto RebasePatch = [&](ptrdiff_t patch_offset) {
        if (mode == PatchMode::PreText) {
            return GetInteger(load_base) + patch_offset;
        } else {
            return GetInteger(load_base) + image_size + patch_offset;
        }
    };

    const auto RebasePc = [&](uintptr_t module_offset) {
        if (mode == PatchMode::PreText) {
            return GetInteger(load_base) + patch_size + module_offset;
        } else {
            return GetInteger(load_base) + module_offset;
        }
    };

    // We are now ready to relocate!
    for (const Relocation& rel : m_branch_to_patch_relocations) {
        ApplyBranchToPatchRelocation(text_words.data() + rel.module_offset / sizeof(u32), rel);
    }
    for (const Relocation& rel : m_branch_to_module_relocations) {
        ApplyBranchToModuleRelocation(m_patch_instructions.data() + rel.patch_offset / sizeof(u32),
                                      rel);
    }

    // Rewrite PC constants and record post trampolines
    for (const Relocation& rel : m_write_module_pc_relocations) {
        oaknut::CodeGenerator rc{m_patch_instructions.data() + rel.patch_offset / sizeof(u32)};
        rc.dx(RebasePc(rel.module_offset));
    }
    for (const Trampoline& rel : m_trampolines) {
        out_trampolines->insert({RebasePc(rel.module_offset), RebasePatch(rel.patch_offset)});
    }

    // Cortex-A57 seems to treat all exclusives as ordered, but newer processors do not.
    // Convert to ordered to preserve this assumption.
    for (u32 i = ModuleCodeIndex; i < static_cast<u32>(text_words.size()); i++) {
        const u32 inst = text_words[i];
        if (auto exclusive = Exclusive{inst}; exclusive.Verify()) {
            text_words[i] = exclusive.AsOrdered();
        }
    }

    // Copy to program image
    if (this->mode == PatchMode::PreText) {
        std::memcpy(program_image.data(), m_patch_instructions.data(),
                    m_patch_instructions.size() * sizeof(u32));
    } else {
        program_image.resize(image_size + patch_size);
        std::memcpy(program_image.data() + image_size, m_patch_instructions.data(),
                    m_patch_instructions.size() * sizeof(u32));
    }
}

size_t Patcher::GetSectionSize() const noexcept {
    return Common::AlignUp(m_patch_instructions.size() * sizeof(u32), Core::Memory::YUZU_PAGESIZE);
}

void Patcher::WriteLoadContext() {
    // This function was called, which modifies X30, so use that as a scratch register.
    // SP contains the guest X30, so save our return X30 to SP + 8, since we have allocated 16 bytes
    // of stack.
    c.STR(X30, SP, 8);
    c.MRS(X30, oaknut::SystemReg::TPIDR_EL0);
    c.LDR(X30, X30, offsetof(NativeExecutionParameters, native_context));

    // Load system registers.
    c.LDR(W0, X30, offsetof(GuestContext, fpsr));
    c.MSR(oaknut::SystemReg::FPSR, X0);
    c.LDR(W0, X30, offsetof(GuestContext, fpcr));
    c.MSR(oaknut::SystemReg::FPCR, X0);
    c.LDR(W0, X30, offsetof(GuestContext, nzcv));
    c.MSR(oaknut::SystemReg::NZCV, X0);

    // Load all vector registers.
    static constexpr size_t VEC_OFF = offsetof(GuestContext, vector_registers);
    for (int i = 0; i <= 30; i += 2) {
        c.LDP(oaknut::QReg{i}, oaknut::QReg{i + 1}, X30, VEC_OFF + 16 * i);
    }

    // Load all general-purpose registers except X30.
    for (int i = 0; i <= 28; i += 2) {
        c.LDP(oaknut::XReg{i}, oaknut::XReg{i + 1}, X30, 8 * i);
    }

    // Reload our return X30 from the stack and return.
    // The patch code will reload the guest X30 for us.
    c.LDR(X30, SP, 8);
    c.RET();
}

void Patcher::WriteSaveContext() {
    // This function was called, which modifies X30, so use that as a scratch register.
    // SP contains the guest X30, so save our X30 to SP + 8, since we have allocated 16 bytes of
    // stack.
    c.STR(X30, SP, 8);
    c.MRS(X30, oaknut::SystemReg::TPIDR_EL0);
    c.LDR(X30, X30, offsetof(NativeExecutionParameters, native_context));

    // Store all general-purpose registers except X30.
    for (int i = 0; i <= 28; i += 2) {
        c.STP(oaknut::XReg{i}, oaknut::XReg{i + 1}, X30, 8 * i);
    }

    // Store all vector registers.
    static constexpr size_t VEC_OFF = offsetof(GuestContext, vector_registers);
    for (int i = 0; i <= 30; i += 2) {
        c.STP(oaknut::QReg{i}, oaknut::QReg{i + 1}, X30, VEC_OFF + 16 * i);
    }

    // Store guest system registers, X30 and SP, using X0 as a scratch register.
    c.STR(X0, SP, PRE_INDEXED, -16);
    c.LDR(X0, SP, 16);
    c.STR(X0, X30, 8 * 30);
    c.ADD(X0, SP, 32);
    c.STR(X0, X30, offsetof(GuestContext, sp));
    c.MRS(X0, oaknut::SystemReg::FPSR);
    c.STR(W0, X30, offsetof(GuestContext, fpsr));
    c.MRS(X0, oaknut::SystemReg::FPCR);
    c.STR(W0, X30, offsetof(GuestContext, fpcr));
    c.MRS(X0, oaknut::SystemReg::NZCV);
    c.STR(W0, X30, offsetof(GuestContext, nzcv));
    c.LDR(X0, SP, POST_INDEXED, 16);

    // Reload our return X30 from the stack, and return.
    c.LDR(X30, SP, 8);
    c.RET();
}

void Patcher::WriteSvcTrampoline(ModuleDestLabel module_dest, u32 svc_id) {
    // We are about to start saving state, so we need to lock the context.
    this->LockContext();

    // Store guest X30 to the stack. Then, save the context and restore the stack.
    // This will save all registers except PC, but we know PC at patch time.
    c.STR(X30, SP, PRE_INDEXED, -16);
    c.BL(m_save_context);
    c.LDR(X30, SP, POST_INDEXED, 16);

    // Now that we've saved all registers, we can use any registers as scratch.
    // Store PC + 4 to arm interface, since we know the instruction offset from the entry point.
    oaknut::Label pc_after_svc;
    c.MRS(X1, oaknut::SystemReg::TPIDR_EL0);
    c.LDR(X1, X1, offsetof(NativeExecutionParameters, native_context));
    c.LDR(X2, pc_after_svc);
    c.STR(X2, X1, offsetof(GuestContext, pc));

    // Store SVC number to execute when we return
    c.MOV(X2, svc_id);
    c.STR(W2, X1, offsetof(GuestContext, svc_swi));

    // We are calling a SVC. Clear esr_el1 and return it.
    static_assert(std::is_same_v<std::underlying_type_t<HaltReason>, u64>);
    oaknut::Label retry;
    c.ADD(X2, X1, offsetof(GuestContext, esr_el1));
    c.l(retry);
    c.LDAXR(X0, X2);
    c.STLXR(W3, XZR, X2);
    c.CBNZ(W3, retry);

    // Add "calling SVC" flag. Since this is X0, this is now our return value.
    c.ORR(X0, X0, static_cast<u64>(HaltReason::SupervisorCall));

    // Offset the GuestContext pointer to the HostContext member.
    // STP has limited range of [-512, 504] which we can't reach otherwise
    // NB: Due to this all offsets below are from the start of HostContext.
    c.ADD(X1, X1, offsetof(GuestContext, host_ctx));

    // Reload host TPIDR_EL0 and SP.
    static_assert(offsetof(HostContext, host_sp) + 8 == offsetof(HostContext, host_tpidr_el0));
    c.LDP(X2, X3, X1, offsetof(HostContext, host_sp));
    c.MOV(SP, X2);
    c.MSR(oaknut::SystemReg::TPIDR_EL0, X3);

    // Load callee-saved host registers and return to host.
    static constexpr size_t HOST_REGS_OFF = offsetof(HostContext, host_saved_regs);
    static constexpr size_t HOST_VREGS_OFF = offsetof(HostContext, host_saved_vregs);
    c.LDP(X19, X20, X1, HOST_REGS_OFF);
    c.LDP(X21, X22, X1, HOST_REGS_OFF + 2 * sizeof(u64));
    c.LDP(X23, X24, X1, HOST_REGS_OFF + 4 * sizeof(u64));
    c.LDP(X25, X26, X1, HOST_REGS_OFF + 6 * sizeof(u64));
    c.LDP(X27, X28, X1, HOST_REGS_OFF + 8 * sizeof(u64));
    c.LDP(X29, X30, X1, HOST_REGS_OFF + 10 * sizeof(u64));
    c.LDP(Q8, Q9, X1, HOST_VREGS_OFF);
    c.LDP(Q10, Q11, X1, HOST_VREGS_OFF + 2 * sizeof(u128));
    c.LDP(Q12, Q13, X1, HOST_VREGS_OFF + 4 * sizeof(u128));
    c.LDP(Q14, Q15, X1, HOST_VREGS_OFF + 6 * sizeof(u128));
    c.RET();

    // Write the post-SVC trampoline address, which will jump back to the guest after restoring its
    // state.
    m_trampolines.push_back({c.offset(), module_dest});

    // Host called this location. Save the return address so we can
    // unwind the stack properly when jumping back.
    c.MRS(X2, oaknut::SystemReg::TPIDR_EL0);
    c.LDR(X2, X2, offsetof(NativeExecutionParameters, native_context));
    c.ADD(X0, X2, offsetof(GuestContext, host_ctx));
    c.STR(X30, X0, offsetof(HostContext, host_saved_regs) + 11 * sizeof(u64));

    // Reload all guest registers except X30 and PC.
    // The function also expects 16 bytes of stack already allocated.
    c.STR(X30, SP, PRE_INDEXED, -16);
    c.BL(m_load_context);
    c.LDR(X30, SP, POST_INDEXED, 16);

    // Use X1 as a scratch register to restore X30.
    c.STR(X1, SP, PRE_INDEXED, -16);
    c.MRS(X1, oaknut::SystemReg::TPIDR_EL0);
    c.LDR(X1, X1, offsetof(NativeExecutionParameters, native_context));
    c.LDR(X30, X1, offsetof(GuestContext, cpu_registers) + sizeof(u64) * 30);
    c.LDR(X1, SP, POST_INDEXED, 16);

    // Unlock the context.
    this->UnlockContext();

    // Jump back to the instruction after the emulated SVC.
    this->BranchToModule(module_dest);

    // Store PC after call.
    c.l(pc_after_svc);
    this->WriteModulePc(module_dest);
}

void Patcher::WriteMrsHandler(ModuleDestLabel module_dest, oaknut::XReg dest_reg,
                              oaknut::SystemReg src_reg) {
    // Retrieve emulated TLS register from GuestContext.
    c.MRS(dest_reg, oaknut::SystemReg::TPIDR_EL0);
    if (src_reg == oaknut::SystemReg::TPIDRRO_EL0) {
        c.LDR(dest_reg, dest_reg, offsetof(NativeExecutionParameters, tpidrro_el0));
    } else {
        c.LDR(dest_reg, dest_reg, offsetof(NativeExecutionParameters, tpidr_el0));
    }

    // Jump back to the instruction after the emulated MRS.
    this->BranchToModule(module_dest);
}

void Patcher::WriteMsrHandler(ModuleDestLabel module_dest, oaknut::XReg src_reg) {
    const auto scratch_reg = src_reg.index() == 0 ? X1 : X0;
    c.STR(scratch_reg, SP, PRE_INDEXED, -16);

    // Save guest value to NativeExecutionParameters::tpidr_el0.
    c.MRS(scratch_reg, oaknut::SystemReg::TPIDR_EL0);
    c.STR(src_reg, scratch_reg, offsetof(NativeExecutionParameters, tpidr_el0));

    // Restore scratch register.
    c.LDR(scratch_reg, SP, POST_INDEXED, 16);

    // Jump back to the instruction after the emulated MSR.
    this->BranchToModule(module_dest);
}

void Patcher::WriteCntpctHandler(ModuleDestLabel module_dest, oaknut::XReg dest_reg) {
    static Common::Arm64::NativeClock clock{};
    const auto factor = clock.GetGuestCNTFRQFactor();
    const auto raw_factor = Common::BitCast<std::array<u64, 2>>(factor);

    const auto use_x2_x3 = dest_reg.index() == 0 || dest_reg.index() == 1;
    oaknut::XReg scratch0 = use_x2_x3 ? X2 : X0;
    oaknut::XReg scratch1 = use_x2_x3 ? X3 : X1;

    oaknut::Label factorlo;
    oaknut::Label factorhi;

    // Save scratches.
    c.STP(scratch0, scratch1, SP, PRE_INDEXED, -16);

    // Load counter value.
    c.MRS(dest_reg, oaknut::SystemReg::CNTVCT_EL0);

    // Load scaling factor.
    c.LDR(scratch0, factorlo);
    c.LDR(scratch1, factorhi);

    // Multiply low bits and get result.
    c.UMULH(scratch0, dest_reg, scratch0);

    // Multiply high bits and add low bit result.
    c.MADD(dest_reg, dest_reg, scratch1, scratch0);

    // Reload scratches.
    c.LDP(scratch0, scratch1, SP, POST_INDEXED, 16);

    // Jump back to the instruction after the emulated MRS.
    this->BranchToModule(module_dest);

    // Scaling factor constant values.
    c.l(factorlo);
    c.dx(raw_factor[0]);
    c.l(factorhi);
    c.dx(raw_factor[1]);
}

void Patcher::LockContext() {
    oaknut::Label retry;

    // Save scratches.
    c.STP(X0, X1, SP, PRE_INDEXED, -16);

    // Reload lock pointer.
    c.l(retry);
    c.CLREX();
    c.MRS(X0, oaknut::SystemReg::TPIDR_EL0);
    c.ADD(X0, X0, offsetof(NativeExecutionParameters, lock));

    static_assert(SpinLockLocked == 0);

    // Load-linked with acquire ordering.
    c.LDAXR(W1, X0);

    // If the value was SpinLockLocked, clear monitor and retry.
    c.CBZ(W1, retry);

    // Store-conditional SpinLockLocked with relaxed ordering.
    c.STXR(W1, WZR, X0);

    // If we failed to store, retry.
    c.CBNZ(W1, retry);

    // We succeeded! Reload scratches.
    c.LDP(X0, X1, SP, POST_INDEXED, 16);
}

void Patcher::UnlockContext() {
    // Save scratches.
    c.STP(X0, X1, SP, PRE_INDEXED, -16);

    // Load lock pointer.
    c.MRS(X0, oaknut::SystemReg::TPIDR_EL0);
    c.ADD(X0, X0, offsetof(NativeExecutionParameters, lock));

    // Load SpinLockUnlocked.
    c.MOV(W1, SpinLockUnlocked);

    // Store value with release ordering.
    c.STLR(W1, X0);

    // Load scratches.
    c.LDP(X0, X1, SP, POST_INDEXED, 16);
}

} // namespace Core::NCE