aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core/hle/kernel/k_thread.cpp
blob: a6deb50ec9d432677c920674d95d0dbaed0a0255 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <algorithm>
#include <atomic>
#include <cinttypes>
#include <condition_variable>
#include <mutex>
#include <optional>
#include <vector>

#include "common/assert.h"
#include "common/bit_util.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/cpu_manager.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/k_condition_variable.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_system_control.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/k_worker_task_manager.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_results.h"
#include "core/hle/kernel/svc_types.h"
#include "core/hle/result.h"
#include "core/memory.h"

namespace {

constexpr inline s32 TerminatingThreadPriority = Kernel::Svc::SystemThreadPriorityHighest - 1;

static void ResetThreadContext32(Kernel::KThread::ThreadContext32& context, u32 stack_top,
                                 u32 entry_point, u32 arg) {
    context = {};
    context.cpu_registers[0] = arg;
    context.cpu_registers[15] = entry_point;
    context.cpu_registers[13] = stack_top;
    context.fpscr = 0;
}

static void ResetThreadContext64(Kernel::KThread::ThreadContext64& context, u64 stack_top,
                                 u64 entry_point, u64 arg) {
    context = {};
    context.cpu_registers[0] = arg;
    context.cpu_registers[18] = Kernel::KSystemControl::GenerateRandomU64() | 1;
    context.pc = entry_point;
    context.sp = stack_top;
    context.fpcr = 0;
    context.fpsr = 0;
}
} // namespace

namespace Kernel {

namespace {

struct ThreadLocalRegion {
    static constexpr std::size_t MessageBufferSize = 0x100;
    std::array<u32, MessageBufferSize / sizeof(u32)> message_buffer;
    std::atomic_uint16_t disable_count;
    std::atomic_uint16_t interrupt_flag;
};

class ThreadQueueImplForKThreadSleep final : public KThreadQueueWithoutEndWait {
public:
    explicit ThreadQueueImplForKThreadSleep(KernelCore& kernel)
        : KThreadQueueWithoutEndWait(kernel) {}
};

class ThreadQueueImplForKThreadSetProperty final : public KThreadQueue {
public:
    explicit ThreadQueueImplForKThreadSetProperty(KernelCore& kernel, KThread::WaiterList* wl)
        : KThreadQueue(kernel), m_wait_list(wl) {}

    void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
        // Remove the thread from the wait list.
        m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));

        // Invoke the base cancel wait handler.
        KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
    }

private:
    KThread::WaiterList* m_wait_list{};
};

} // namespace

KThread::KThread(KernelCore& kernel)
    : KAutoObjectWithSlabHeapAndContainer{kernel}, m_activity_pause_lock{kernel} {}
KThread::~KThread() = default;

Result KThread::Initialize(KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top,
                           s32 prio, s32 virt_core, KProcess* owner, ThreadType type) {
    // Assert parameters are valid.
    ASSERT((type == ThreadType::Main) || (type == ThreadType::Dummy) ||
           (Svc::HighestThreadPriority <= prio && prio <= Svc::LowestThreadPriority));
    ASSERT((owner != nullptr) || (type != ThreadType::User));
    ASSERT(0 <= virt_core && virt_core < static_cast<s32>(Common::BitSize<u64>()));

    // Convert the virtual core to a physical core.
    const s32 phys_core = Core::Hardware::VirtualToPhysicalCoreMap[virt_core];
    ASSERT(0 <= phys_core && phys_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES));

    // First, clear the TLS address.
    m_tls_address = {};

    // Next, assert things based on the type.
    switch (type) {
    case ThreadType::Main:
        ASSERT(arg == 0);
        [[fallthrough]];
    case ThreadType::User:
        ASSERT(((owner == nullptr) ||
                (owner->GetCoreMask() | (1ULL << virt_core)) == owner->GetCoreMask()));
        ASSERT(((owner == nullptr) || (prio > Svc::LowestThreadPriority) ||
                (owner->GetPriorityMask() | (1ULL << prio)) == owner->GetPriorityMask()));
        break;
    case ThreadType::HighPriority:
    case ThreadType::Dummy:
        break;
    case ThreadType::Kernel:
        UNIMPLEMENTED();
        break;
    default:
        ASSERT_MSG(false, "KThread::Initialize: Unknown ThreadType {}", static_cast<u32>(type));
        break;
    }
    m_thread_type = type;

    // Set the ideal core ID and affinity mask.
    m_virtual_ideal_core_id = virt_core;
    m_physical_ideal_core_id = phys_core;
    m_virtual_affinity_mask = 1ULL << virt_core;
    m_physical_affinity_mask.SetAffinity(phys_core, true);

    // Set the thread state.
    m_thread_state = (type == ThreadType::Main || type == ThreadType::Dummy)
                         ? ThreadState::Runnable
                         : ThreadState::Initialized;

    // Set TLS address.
    m_tls_address = 0;

    // Set parent and condvar tree.
    m_parent = nullptr;
    m_condvar_tree = nullptr;

    // Set sync booleans.
    m_signaled = false;
    m_termination_requested = false;
    m_wait_cancelled = false;
    m_cancellable = false;

    // Set core ID and wait result.
    m_core_id = phys_core;
    m_wait_result = ResultNoSynchronizationObject;

    // Set priorities.
    m_priority = prio;
    m_base_priority = prio;

    // Initialize sleeping queue.
    m_wait_queue = nullptr;

    // Set suspend flags.
    m_suspend_request_flags = 0;
    m_suspend_allowed_flags = static_cast<u32>(ThreadState::SuspendFlagMask);

    // We're neither debug attached, nor are we nesting our priority inheritance.
    m_debug_attached = false;
    m_priority_inheritance_count = 0;

    // We haven't been scheduled, and we have done no light IPC.
    m_schedule_count = -1;
    m_last_scheduled_tick = 0;
    m_light_ipc_data = nullptr;

    // We're not waiting for a lock, and we haven't disabled migration.
    m_waiting_lock_info = nullptr;
    m_num_core_migration_disables = 0;

    // We have no waiters, but we do have an entrypoint.
    m_num_kernel_waiters = 0;

    // Set our current core id.
    m_current_core_id = phys_core;

    // We haven't released our resource limit hint, and we've spent no time on the cpu.
    m_resource_limit_release_hint = false;
    m_cpu_time = 0;

    // Set debug context.
    m_stack_top = user_stack_top;
    m_argument = arg;

    // Clear our stack parameters.
    std::memset(static_cast<void*>(std::addressof(this->GetStackParameters())), 0,
                sizeof(StackParameters));

    // Set parent, if relevant.
    if (owner != nullptr) {
        // Setup the TLS, if needed.
        if (type == ThreadType::User) {
            R_TRY(owner->CreateThreadLocalRegion(std::addressof(m_tls_address)));
            owner->GetMemory().ZeroBlock(m_tls_address, Svc::ThreadLocalRegionSize);
        }

        m_parent = owner;
        m_parent->Open();
    }

    // Initialize thread context.
    ResetThreadContext64(m_thread_context_64, GetInteger(user_stack_top), GetInteger(func), arg);
    ResetThreadContext32(m_thread_context_32, static_cast<u32>(GetInteger(user_stack_top)),
                         static_cast<u32>(GetInteger(func)), static_cast<u32>(arg));

    // Setup the stack parameters.
    StackParameters& sp = this->GetStackParameters();
    sp.cur_thread = this;
    sp.disable_count = 1;
    this->SetInExceptionHandler();

    // Set thread ID.
    m_thread_id = m_kernel.CreateNewThreadID();

    // We initialized!
    m_initialized = true;

    // Register ourselves with our parent process.
    if (m_parent != nullptr) {
        m_parent->RegisterThread(this);
        if (m_parent->IsSuspended()) {
            RequestSuspend(SuspendType::Process);
        }
    }

    R_SUCCEED();
}

Result KThread::InitializeThread(KThread* thread, KThreadFunction func, uintptr_t arg,
                                 KProcessAddress user_stack_top, s32 prio, s32 core,
                                 KProcess* owner, ThreadType type,
                                 std::function<void()>&& init_func) {
    // Initialize the thread.
    R_TRY(thread->Initialize(func, arg, user_stack_top, prio, core, owner, type));

    // Initialize emulation parameters.
    thread->m_host_context = std::make_shared<Common::Fiber>(std::move(init_func));

    R_SUCCEED();
}

Result KThread::InitializeDummyThread(KThread* thread, KProcess* owner) {
    // Initialize the thread.
    R_TRY(thread->Initialize({}, {}, {}, DummyThreadPriority, 3, owner, ThreadType::Dummy));

    // Initialize emulation parameters.
    thread->m_stack_parameters.disable_count = 0;

    R_SUCCEED();
}

Result KThread::InitializeMainThread(Core::System& system, KThread* thread, s32 virt_core) {
    R_RETURN(InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {},
                              ThreadType::Main, system.GetCpuManager().GetGuestActivateFunc()));
}

Result KThread::InitializeIdleThread(Core::System& system, KThread* thread, s32 virt_core) {
    R_RETURN(InitializeThread(thread, {}, {}, {}, IdleThreadPriority, virt_core, {},
                              ThreadType::Main, system.GetCpuManager().GetIdleThreadStartFunc()));
}

Result KThread::InitializeHighPriorityThread(Core::System& system, KThread* thread,
                                             KThreadFunction func, uintptr_t arg, s32 virt_core) {
    R_RETURN(InitializeThread(thread, func, arg, {}, {}, virt_core, nullptr,
                              ThreadType::HighPriority,
                              system.GetCpuManager().GetShutdownThreadStartFunc()));
}

Result KThread::InitializeUserThread(Core::System& system, KThread* thread, KThreadFunction func,
                                     uintptr_t arg, KProcessAddress user_stack_top, s32 prio,
                                     s32 virt_core, KProcess* owner) {
    system.Kernel().GlobalSchedulerContext().AddThread(thread);
    R_RETURN(InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner,
                              ThreadType::User, system.GetCpuManager().GetGuestThreadFunc()));
}

Result KThread::InitializeServiceThread(Core::System& system, KThread* thread,
                                        std::function<void()>&& func, s32 prio, s32 virt_core,
                                        KProcess* owner) {
    system.Kernel().GlobalSchedulerContext().AddThread(thread);
    std::function<void()> func2{[&system, func_{std::move(func)}] {
        // Similar to UserModeThreadStarter.
        system.Kernel().CurrentScheduler()->OnThreadStart();

        // Run the guest function.
        func_();

        // Exit.
        Svc::ExitThread(system);
    }};

    R_RETURN(InitializeThread(thread, {}, {}, {}, prio, virt_core, owner, ThreadType::HighPriority,
                              std::move(func2)));
}

void KThread::PostDestroy(uintptr_t arg) {
    KProcess* owner = reinterpret_cast<KProcess*>(arg & ~1ULL);
    const bool resource_limit_release_hint = (arg & 1);
    const s64 hint_value = (resource_limit_release_hint ? 0 : 1);
    if (owner != nullptr) {
        owner->GetResourceLimit()->Release(LimitableResource::ThreadCountMax, 1, hint_value);
        owner->Close();
    }
}

void KThread::Finalize() {
    // If the thread has an owner process, unregister it.
    if (m_parent != nullptr) {
        m_parent->UnregisterThread(this);
    }

    // If the thread has a local region, delete it.
    if (m_tls_address != 0) {
        ASSERT(m_parent->DeleteThreadLocalRegion(m_tls_address).IsSuccess());
    }

    // Release any waiters.
    {
        ASSERT(m_waiting_lock_info == nullptr);
        KScopedSchedulerLock sl{m_kernel};

        // Check that we have no kernel waiters.
        ASSERT(m_num_kernel_waiters == 0);

        auto it = m_held_lock_info_list.begin();
        while (it != m_held_lock_info_list.end()) {
            // Get the lock info.
            auto* const lock_info = std::addressof(*it);

            // The lock shouldn't have a kernel waiter.
            ASSERT(!lock_info->GetIsKernelAddressKey());

            // Remove all waiters.
            while (lock_info->GetWaiterCount() != 0) {
                // Get the front waiter.
                KThread* const waiter = lock_info->GetHighestPriorityWaiter();

                // Remove it from the lock.
                if (lock_info->RemoveWaiter(waiter)) {
                    ASSERT(lock_info->GetWaiterCount() == 0);
                }

                // Cancel the thread's wait.
                waiter->CancelWait(ResultInvalidState, true);
            }

            // Remove the held lock from our list.
            it = m_held_lock_info_list.erase(it);

            // Free the lock info.
            LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
        }
    }

    // Release host emulation members.
    m_host_context.reset();

    // Perform inherited finalization.
    KSynchronizationObject::Finalize();
}

bool KThread::IsSignaled() const {
    return m_signaled;
}

void KThread::OnTimer() {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // If we're waiting, cancel the wait.
    if (this->GetState() == ThreadState::Waiting) {
        m_wait_queue->CancelWait(this, ResultTimedOut, false);
    }
}

void KThread::StartTermination() {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Release user exception and unpin, if relevant.
    if (m_parent != nullptr) {
        m_parent->ReleaseUserException(this);
        if (m_parent->GetPinnedThread(GetCurrentCoreId(m_kernel)) == this) {
            m_parent->UnpinCurrentThread();
        }
    }

    // Set state to terminated.
    this->SetState(ThreadState::Terminated);

    // Clear the thread's status as running in parent.
    if (m_parent != nullptr) {
        m_parent->ClearRunningThread(this);
    }

    // Clear previous thread in KScheduler.
    KScheduler::ClearPreviousThread(m_kernel, this);

    // Register terminated dpc flag.
    this->RegisterDpc(DpcFlag::Terminated);
}

void KThread::FinishTermination() {
    // Ensure that the thread is not executing on any core.
    if (m_parent != nullptr) {
        for (std::size_t i = 0; i < static_cast<std::size_t>(Core::Hardware::NUM_CPU_CORES); ++i) {
            KThread* core_thread{};
            do {
                core_thread = m_kernel.Scheduler(i).GetSchedulerCurrentThread();
            } while (core_thread == this);
        }
    }

    // Acquire the scheduler lock.
    KScopedSchedulerLock sl{m_kernel};

    // Signal.
    m_signaled = true;
    KSynchronizationObject::NotifyAvailable();

    // Close the thread.
    this->Close();
}

void KThread::DoWorkerTaskImpl() {
    // Finish the termination that was begun by Exit().
    this->FinishTermination();
}

void KThread::Pin(s32 current_core) {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Set ourselves as pinned.
    GetStackParameters().is_pinned = true;

    // Disable core migration.
    ASSERT(m_num_core_migration_disables == 0);
    {
        ++m_num_core_migration_disables;

        // Save our ideal state to restore when we're unpinned.
        m_original_physical_ideal_core_id = m_physical_ideal_core_id;
        m_original_physical_affinity_mask = m_physical_affinity_mask;

        // Bind ourselves to this core.
        const s32 active_core = this->GetActiveCore();

        this->SetActiveCore(current_core);
        m_physical_ideal_core_id = current_core;
        m_physical_affinity_mask.SetAffinityMask(1ULL << current_core);

        if (active_core != current_core ||
            m_physical_affinity_mask.GetAffinityMask() !=
                m_original_physical_affinity_mask.GetAffinityMask()) {
            KScheduler::OnThreadAffinityMaskChanged(m_kernel, this,
                                                    m_original_physical_affinity_mask, active_core);
        }
    }

    // Disallow performing thread suspension.
    {
        // Update our allow flags.
        m_suspend_allowed_flags &= ~(1 << (static_cast<u32>(SuspendType::Thread) +
                                           static_cast<u32>(ThreadState::SuspendShift)));

        // Update our state.
        this->UpdateState();
    }

    // TODO(bunnei): Update our SVC access permissions.
    ASSERT(m_parent != nullptr);
}

void KThread::Unpin() {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Set ourselves as unpinned.
    this->GetStackParameters().is_pinned = false;

    // Enable core migration.
    ASSERT(m_num_core_migration_disables == 1);
    {
        m_num_core_migration_disables--;

        // Restore our original state.
        const KAffinityMask old_mask = m_physical_affinity_mask;

        m_physical_ideal_core_id = m_original_physical_ideal_core_id;
        m_physical_affinity_mask = m_original_physical_affinity_mask;

        if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
            const s32 active_core = this->GetActiveCore();

            if (!m_physical_affinity_mask.GetAffinity(active_core)) {
                if (m_physical_ideal_core_id >= 0) {
                    this->SetActiveCore(m_physical_ideal_core_id);
                } else {
                    this->SetActiveCore(static_cast<s32>(
                        Common::BitSize<u64>() - 1 -
                        std::countl_zero(m_physical_affinity_mask.GetAffinityMask())));
                }
            }
            KScheduler::OnThreadAffinityMaskChanged(m_kernel, this, old_mask, active_core);
        }
    }

    // Allow performing thread suspension (if termination hasn't been requested).
    if (!this->IsTerminationRequested()) {
        // Update our allow flags.
        m_suspend_allowed_flags |= (1 << (static_cast<u32>(SuspendType::Thread) +
                                          static_cast<u32>(ThreadState::SuspendShift)));

        // Update our state.
        this->UpdateState();
    }

    // TODO(bunnei): Update our SVC access permissions.
    ASSERT(m_parent != nullptr);

    // Resume any threads that began waiting on us while we were pinned.
    for (auto it = m_pinned_waiter_list.begin(); it != m_pinned_waiter_list.end(); ++it) {
        it->EndWait(ResultSuccess);
    }
}

u16 KThread::GetUserDisableCount() const {
    if (!this->IsUserThread()) {
        // We only emulate TLS for user threads
        return {};
    }

    auto& memory = this->GetOwnerProcess()->GetMemory();
    return memory.Read16(m_tls_address + offsetof(ThreadLocalRegion, disable_count));
}

void KThread::SetInterruptFlag() {
    if (!this->IsUserThread()) {
        // We only emulate TLS for user threads
        return;
    }

    auto& memory = this->GetOwnerProcess()->GetMemory();
    memory.Write16(m_tls_address + offsetof(ThreadLocalRegion, interrupt_flag), 1);
}

void KThread::ClearInterruptFlag() {
    if (!this->IsUserThread()) {
        // We only emulate TLS for user threads
        return;
    }

    auto& memory = this->GetOwnerProcess()->GetMemory();
    memory.Write16(m_tls_address + offsetof(ThreadLocalRegion, interrupt_flag), 0);
}

Result KThread::GetCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
    KScopedSchedulerLock sl{m_kernel};

    // Get the virtual mask.
    *out_ideal_core = m_virtual_ideal_core_id;
    *out_affinity_mask = m_virtual_affinity_mask;

    R_SUCCEED();
}

Result KThread::GetPhysicalCoreMask(s32* out_ideal_core, u64* out_affinity_mask) {
    KScopedSchedulerLock sl{m_kernel};
    ASSERT(m_num_core_migration_disables >= 0);

    // Select between core mask and original core mask.
    if (m_num_core_migration_disables == 0) {
        *out_ideal_core = m_physical_ideal_core_id;
        *out_affinity_mask = m_physical_affinity_mask.GetAffinityMask();
    } else {
        *out_ideal_core = m_original_physical_ideal_core_id;
        *out_affinity_mask = m_original_physical_affinity_mask.GetAffinityMask();
    }

    R_SUCCEED();
}

Result KThread::SetCoreMask(s32 core_id, u64 v_affinity_mask) {
    ASSERT(m_parent != nullptr);
    ASSERT(v_affinity_mask != 0);
    KScopedLightLock lk(m_activity_pause_lock);

    // Set the core mask.
    u64 p_affinity_mask = 0;
    {
        KScopedSchedulerLock sl(m_kernel);
        ASSERT(m_num_core_migration_disables >= 0);

        // If we're updating, set our ideal virtual core.
        if (core_id != Svc::IdealCoreNoUpdate) {
            m_virtual_ideal_core_id = core_id;
        } else {
            // Preserve our ideal core id.
            core_id = m_virtual_ideal_core_id;
            R_UNLESS(((1ULL << core_id) & v_affinity_mask) != 0, ResultInvalidCombination);
        }

        // Set our affinity mask.
        m_virtual_affinity_mask = v_affinity_mask;

        // Translate the virtual core to a physical core.
        if (core_id >= 0) {
            core_id = Core::Hardware::VirtualToPhysicalCoreMap[core_id];
        }

        // Translate the virtual affinity mask to a physical one.
        while (v_affinity_mask != 0) {
            const u64 next = std::countr_zero(v_affinity_mask);
            v_affinity_mask &= ~(1ULL << next);
            p_affinity_mask |= (1ULL << Core::Hardware::VirtualToPhysicalCoreMap[next]);
        }

        // If we haven't disabled migration, perform an affinity change.
        if (m_num_core_migration_disables == 0) {
            const KAffinityMask old_mask = m_physical_affinity_mask;

            // Set our new ideals.
            m_physical_ideal_core_id = core_id;
            m_physical_affinity_mask.SetAffinityMask(p_affinity_mask);

            if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
                const s32 active_core = GetActiveCore();

                if (active_core >= 0 && !m_physical_affinity_mask.GetAffinity(active_core)) {
                    const s32 new_core = static_cast<s32>(
                        m_physical_ideal_core_id >= 0
                            ? m_physical_ideal_core_id
                            : Common::BitSize<u64>() - 1 -
                                  std::countl_zero(m_physical_affinity_mask.GetAffinityMask()));
                    SetActiveCore(new_core);
                }
                KScheduler::OnThreadAffinityMaskChanged(m_kernel, this, old_mask, active_core);
            }
        } else {
            // Otherwise, we edit the original affinity for restoration later.
            m_original_physical_ideal_core_id = core_id;
            m_original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
        }
    }

    // Update the pinned waiter list.
    ThreadQueueImplForKThreadSetProperty wait_queue(m_kernel, std::addressof(m_pinned_waiter_list));
    {
        bool retry_update{};
        do {
            // Lock the scheduler.
            KScopedSchedulerLock sl(m_kernel);

            // Don't do any further management if our termination has been requested.
            R_SUCCEED_IF(this->IsTerminationRequested());

            // By default, we won't need to retry.
            retry_update = false;

            // Check if the thread is currently running.
            bool thread_is_current{};
            s32 thread_core;
            for (thread_core = 0; thread_core < static_cast<s32>(Core::Hardware::NUM_CPU_CORES);
                 ++thread_core) {
                if (m_kernel.Scheduler(thread_core).GetSchedulerCurrentThread() == this) {
                    thread_is_current = true;
                    break;
                }
            }

            // If the thread is currently running, check whether it's no longer allowed under the
            // new mask.
            if (thread_is_current && ((1ULL << thread_core) & p_affinity_mask) == 0) {
                // If the thread is pinned, we want to wait until it's not pinned.
                if (this->GetStackParameters().is_pinned) {
                    // Verify that the current thread isn't terminating.
                    R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(),
                             ResultTerminationRequested);

                    // Wait until the thread isn't pinned any more.
                    m_pinned_waiter_list.push_back(GetCurrentThread(m_kernel));
                    GetCurrentThread(m_kernel).BeginWait(std::addressof(wait_queue));
                } else {
                    // If the thread isn't pinned, release the scheduler lock and retry until it's
                    // not current.
                    retry_update = true;
                }
            }
        } while (retry_update);
    }

    R_SUCCEED();
}

void KThread::SetBasePriority(s32 value) {
    ASSERT(Svc::HighestThreadPriority <= value && value <= Svc::LowestThreadPriority);

    KScopedSchedulerLock sl{m_kernel};

    // Change our base priority.
    m_base_priority = value;

    // Perform a priority restoration.
    RestorePriority(m_kernel, this);
}

KThread* KThread::GetLockOwner() const {
    return m_waiting_lock_info != nullptr ? m_waiting_lock_info->GetOwner() : nullptr;
}

void KThread::IncreaseBasePriority(s32 priority) {
    ASSERT(Svc::HighestThreadPriority <= priority && priority <= Svc::LowestThreadPriority);
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
    ASSERT(!this->GetStackParameters().is_pinned);

    // Set our base priority.
    if (m_base_priority > priority) {
        m_base_priority = priority;

        // Perform a priority restoration.
        RestorePriority(m_kernel, this);
    }
}

void KThread::RequestSuspend(SuspendType type) {
    KScopedSchedulerLock sl{m_kernel};

    // Note the request in our flags.
    m_suspend_request_flags |=
        (1U << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)));

    // Try to perform the suspend.
    this->TrySuspend();
}

void KThread::Resume(SuspendType type) {
    KScopedSchedulerLock sl{m_kernel};

    // Clear the request in our flags.
    m_suspend_request_flags &=
        ~(1U << (static_cast<u32>(ThreadState::SuspendShift) + static_cast<u32>(type)));

    // Update our state.
    this->UpdateState();
}

void KThread::WaitCancel() {
    KScopedSchedulerLock sl{m_kernel};

    // Check if we're waiting and cancellable.
    if (this->GetState() == ThreadState::Waiting && m_cancellable) {
        m_wait_cancelled = false;
        m_wait_queue->CancelWait(this, ResultCancelled, true);
    } else {
        // Otherwise, note that we cancelled a wait.
        m_wait_cancelled = true;
    }
}

void KThread::TrySuspend() {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
    ASSERT(this->IsSuspendRequested());

    // Ensure that we have no waiters.
    if (this->GetNumKernelWaiters() > 0) {
        return;
    }
    ASSERT(this->GetNumKernelWaiters() == 0);

    // Perform the suspend.
    this->UpdateState();
}

void KThread::UpdateState() {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Set our suspend flags in state.
    const ThreadState old_state = m_thread_state.load(std::memory_order_relaxed);
    const auto new_state =
        static_cast<ThreadState>(this->GetSuspendFlags()) | (old_state & ThreadState::Mask);
    m_thread_state.store(new_state, std::memory_order_relaxed);

    // Note the state change in scheduler.
    if (new_state != old_state) {
        KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
    }
}

void KThread::Continue() {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Clear our suspend flags in state.
    const ThreadState old_state = m_thread_state.load(std::memory_order_relaxed);
    m_thread_state.store(old_state & ThreadState::Mask, std::memory_order_relaxed);

    // Note the state change in scheduler.
    KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
}

void KThread::CloneFpuStatus() {
    // We shouldn't reach here when starting kernel threads.
    ASSERT(this->GetOwnerProcess() != nullptr);
    ASSERT(this->GetOwnerProcess() == GetCurrentProcessPointer(m_kernel));

    if (this->GetOwnerProcess()->Is64Bit()) {
        // Clone FPSR and FPCR.
        ThreadContext64 cur_ctx{};
        m_kernel.System().CurrentArmInterface().SaveContext(cur_ctx);

        this->GetContext64().fpcr = cur_ctx.fpcr;
        this->GetContext64().fpsr = cur_ctx.fpsr;
    } else {
        // Clone FPSCR.
        ThreadContext32 cur_ctx{};
        m_kernel.System().CurrentArmInterface().SaveContext(cur_ctx);

        this->GetContext32().fpscr = cur_ctx.fpscr;
    }
}

Result KThread::SetActivity(Svc::ThreadActivity activity) {
    // Lock ourselves.
    KScopedLightLock lk(m_activity_pause_lock);

    // Set the activity.
    {
        // Lock the scheduler.
        KScopedSchedulerLock sl(m_kernel);

        // Verify our state.
        const auto cur_state = this->GetState();
        R_UNLESS((cur_state == ThreadState::Waiting || cur_state == ThreadState::Runnable),
                 ResultInvalidState);

        // Either pause or resume.
        if (activity == Svc::ThreadActivity::Paused) {
            // Verify that we're not suspended.
            R_UNLESS(!this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);

            // Suspend.
            this->RequestSuspend(SuspendType::Thread);
        } else {
            ASSERT(activity == Svc::ThreadActivity::Runnable);

            // Verify that we're suspended.
            R_UNLESS(this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);

            // Resume.
            this->Resume(SuspendType::Thread);
        }
    }

    // If the thread is now paused, update the pinned waiter list.
    if (activity == Svc::ThreadActivity::Paused) {
        ThreadQueueImplForKThreadSetProperty wait_queue(m_kernel,
                                                        std::addressof(m_pinned_waiter_list));

        bool thread_is_current{};
        do {
            // Lock the scheduler.
            KScopedSchedulerLock sl(m_kernel);

            // Don't do any further management if our termination has been requested.
            R_SUCCEED_IF(this->IsTerminationRequested());

            // By default, treat the thread as not current.
            thread_is_current = false;

            // Check whether the thread is pinned.
            if (this->GetStackParameters().is_pinned) {
                // Verify that the current thread isn't terminating.
                R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(),
                         ResultTerminationRequested);

                // Wait until the thread isn't pinned any more.
                m_pinned_waiter_list.push_back(GetCurrentThread(m_kernel));
                GetCurrentThread(m_kernel).BeginWait(std::addressof(wait_queue));
            } else {
                // Check if the thread is currently running.
                // If it is, we'll need to retry.
                for (auto i = 0; i < static_cast<s32>(Core::Hardware::NUM_CPU_CORES); ++i) {
                    if (m_kernel.Scheduler(i).GetSchedulerCurrentThread() == this) {
                        thread_is_current = true;
                        break;
                    }
                }
            }
        } while (thread_is_current);
    }

    R_SUCCEED();
}

Result KThread::GetThreadContext3(Common::ScratchBuffer<u8>& out) {
    // Lock ourselves.
    KScopedLightLock lk{m_activity_pause_lock};

    // Get the context.
    {
        // Lock the scheduler.
        KScopedSchedulerLock sl{m_kernel};

        // Verify that we're suspended.
        R_UNLESS(this->IsSuspendRequested(SuspendType::Thread), ResultInvalidState);

        // If we're not terminating, get the thread's user context.
        if (!this->IsTerminationRequested()) {
            if (m_parent->Is64Bit()) {
                // Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
                auto context = GetContext64();
                context.pstate &= 0xFF0FFE20;
                out.resize_destructive(sizeof(context));
                std::memcpy(out.data(), std::addressof(context), sizeof(context));
            } else {
                // Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
                auto context = GetContext32();
                context.cpsr &= 0xFF0FFE20;
                out.resize_destructive(sizeof(context));
                std::memcpy(out.data(), std::addressof(context), sizeof(context));
            }
        }
    }

    R_SUCCEED();
}

void KThread::AddHeldLock(LockWithPriorityInheritanceInfo* lock_info) {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Set ourselves as the lock's owner.
    lock_info->SetOwner(this);

    // Add the lock to our held list.
    m_held_lock_info_list.push_front(*lock_info);
}

KThread::LockWithPriorityInheritanceInfo* KThread::FindHeldLock(KProcessAddress address_key,
                                                                bool is_kernel_address_key) {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Try to find an existing held lock.
    for (auto& held_lock : m_held_lock_info_list) {
        if (held_lock.GetAddressKey() == address_key &&
            held_lock.GetIsKernelAddressKey() == is_kernel_address_key) {
            return std::addressof(held_lock);
        }
    }

    return nullptr;
}

void KThread::AddWaiterImpl(KThread* thread) {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
    ASSERT(thread->GetConditionVariableTree() == nullptr);

    // Get the thread's address key.
    const auto address_key = thread->GetAddressKey();
    const auto is_kernel_address_key = thread->GetIsKernelAddressKey();

    // Keep track of how many kernel waiters we have.
    if (is_kernel_address_key) {
        ASSERT((m_num_kernel_waiters++) >= 0);
        KScheduler::SetSchedulerUpdateNeeded(m_kernel);
    }

    // Get the relevant lock info.
    auto* lock_info = this->FindHeldLock(address_key, is_kernel_address_key);
    if (lock_info == nullptr) {
        // Create a new lock for the address key.
        lock_info =
            LockWithPriorityInheritanceInfo::Create(m_kernel, address_key, is_kernel_address_key);

        // Add the new lock to our list.
        this->AddHeldLock(lock_info);
    }

    // Add the thread as waiter to the lock info.
    lock_info->AddWaiter(thread);
}

void KThread::RemoveWaiterImpl(KThread* thread) {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Keep track of how many kernel waiters we have.
    if (thread->GetIsKernelAddressKey()) {
        ASSERT((m_num_kernel_waiters--) > 0);
        KScheduler::SetSchedulerUpdateNeeded(m_kernel);
    }

    // Get the info for the lock the thread is waiting on.
    auto* lock_info = thread->GetWaitingLockInfo();
    ASSERT(lock_info->GetOwner() == this);

    // Remove the waiter.
    if (lock_info->RemoveWaiter(thread)) {
        m_held_lock_info_list.erase(m_held_lock_info_list.iterator_to(*lock_info));
        LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
    }
}

void KThread::RestorePriority(KernelCore& kernel, KThread* thread) {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(kernel));

    while (thread != nullptr) {
        // We want to inherit priority where possible.
        s32 new_priority = thread->GetBasePriority();
        for (const auto& held_lock : thread->m_held_lock_info_list) {
            new_priority =
                std::min(new_priority, held_lock.GetHighestPriorityWaiter()->GetPriority());
        }

        // If the priority we would inherit is not different from ours, don't do anything.
        if (new_priority == thread->GetPriority()) {
            return;
        }

        // Get the owner of whatever lock this thread is waiting on.
        KThread* const lock_owner = thread->GetLockOwner();

        // If the thread is waiting on some lock, remove it as a waiter to prevent violating red
        // black tree invariants.
        if (lock_owner != nullptr) {
            lock_owner->RemoveWaiterImpl(thread);
        }

        // Ensure we don't violate condition variable red black tree invariants.
        if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
            BeforeUpdatePriority(kernel, cv_tree, thread);
        }

        // Change the priority.
        const s32 old_priority = thread->GetPriority();
        thread->SetPriority(new_priority);

        // Restore the condition variable, if relevant.
        if (auto* cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
            AfterUpdatePriority(kernel, cv_tree, thread);
        }

        // If we removed the thread from some lock's waiting list, add it back.
        if (lock_owner != nullptr) {
            lock_owner->AddWaiterImpl(thread);
        }

        // Update the scheduler.
        KScheduler::OnThreadPriorityChanged(kernel, thread, old_priority);

        // Continue inheriting priority.
        thread = lock_owner;
    }
}

void KThread::AddWaiter(KThread* thread) {
    this->AddWaiterImpl(thread);

    // If the thread has a higher priority than us, we should inherit.
    if (thread->GetPriority() < this->GetPriority()) {
        RestorePriority(m_kernel, this);
    }
}

void KThread::RemoveWaiter(KThread* thread) {
    this->RemoveWaiterImpl(thread);

    // If our priority is the same as the thread's (and we've inherited), we may need to restore to
    // lower priority.
    if (this->GetPriority() == thread->GetPriority() &&
        this->GetPriority() < this->GetBasePriority()) {
        RestorePriority(m_kernel, this);
    }
}

KThread* KThread::RemoveWaiterByKey(bool* out_has_waiters, KProcessAddress key,
                                    bool is_kernel_address_key_) {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));

    // Get the relevant lock info.
    auto* lock_info = this->FindHeldLock(key, is_kernel_address_key_);
    if (lock_info == nullptr) {
        *out_has_waiters = false;
        return nullptr;
    }

    // Remove the lock info from our held list.
    m_held_lock_info_list.erase(m_held_lock_info_list.iterator_to(*lock_info));

    // Keep track of how many kernel waiters we have.
    if (lock_info->GetIsKernelAddressKey()) {
        m_num_kernel_waiters -= lock_info->GetWaiterCount();
        ASSERT(m_num_kernel_waiters >= 0);
        KScheduler::SetSchedulerUpdateNeeded(m_kernel);
    }

    ASSERT(lock_info->GetWaiterCount() > 0);

    // Remove the highest priority waiter from the lock to be the next owner.
    KThread* next_lock_owner = lock_info->GetHighestPriorityWaiter();
    if (lock_info->RemoveWaiter(next_lock_owner)) {
        // The new owner was the only waiter.
        *out_has_waiters = false;

        // Free the lock info, since it has no waiters.
        LockWithPriorityInheritanceInfo::Free(m_kernel, lock_info);
    } else {
        // There are additional waiters on the lock.
        *out_has_waiters = true;

        // Add the lock to the new owner's held list.
        next_lock_owner->AddHeldLock(lock_info);

        // Keep track of any kernel waiters for the new owner.
        if (lock_info->GetIsKernelAddressKey()) {
            next_lock_owner->m_num_kernel_waiters += lock_info->GetWaiterCount();
            ASSERT(next_lock_owner->m_num_kernel_waiters > 0);

            // NOTE: No need to set scheduler update needed, because we will have already done so
            // when removing earlier.
        }
    }

    // If our priority is the same as the next owner's (and we've inherited), we may need to restore
    // to lower priority.
    if (this->GetPriority() == next_lock_owner->GetPriority() &&
        this->GetPriority() < this->GetBasePriority()) {
        RestorePriority(m_kernel, this);
        // NOTE: No need to restore priority on the next lock owner, because it was already the
        // highest priority waiter on the lock.
    }

    // Return the next lock owner.
    return next_lock_owner;
}

Result KThread::Run() {
    while (true) {
        KScopedSchedulerLock lk{m_kernel};

        // If either this thread or the current thread are requesting termination, note it.
        R_UNLESS(!this->IsTerminationRequested(), ResultTerminationRequested);
        R_UNLESS(!GetCurrentThread(m_kernel).IsTerminationRequested(), ResultTerminationRequested);

        // Ensure our thread state is correct.
        R_UNLESS(this->GetState() == ThreadState::Initialized, ResultInvalidState);

        // If the current thread has been asked to suspend, suspend it and retry.
        if (GetCurrentThread(m_kernel).IsSuspended()) {
            GetCurrentThread(m_kernel).UpdateState();
            continue;
        }

        // If we're not a kernel thread and we've been asked to suspend, suspend ourselves.
        if (KProcess* owner = this->GetOwnerProcess(); owner != nullptr) {
            if (this->IsUserThread() && this->IsSuspended()) {
                this->UpdateState();
            }
            owner->IncrementRunningThreadCount();
        }

        // Open a reference, now that we're running.
        this->Open();

        // Set our state and finish.
        this->SetState(ThreadState::Runnable);

        R_SUCCEED();
    }
}

void KThread::Exit() {
    ASSERT(this == GetCurrentThreadPointer(m_kernel));

    // Release the thread resource hint, running thread count from parent.
    if (m_parent != nullptr) {
        m_parent->GetResourceLimit()->Release(Kernel::LimitableResource::ThreadCountMax, 0, 1);
        m_resource_limit_release_hint = true;
        m_parent->DecrementRunningThreadCount();
    }

    // Perform termination.
    {
        KScopedSchedulerLock sl{m_kernel};

        // Disallow all suspension.
        m_suspend_allowed_flags = 0;
        this->UpdateState();

        // Disallow all suspension.
        m_suspend_allowed_flags = 0;

        // Start termination.
        this->StartTermination();

        // Register the thread as a work task.
        KWorkerTaskManager::AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit, this);
    }

    UNREACHABLE_MSG("KThread::Exit() would return");
}

Result KThread::Terminate() {
    ASSERT(this != GetCurrentThreadPointer(m_kernel));

    // Request the thread terminate if it hasn't already.
    if (const auto new_state = this->RequestTerminate(); new_state != ThreadState::Terminated) {
        // If the thread isn't terminated, wait for it to terminate.
        s32 index;
        KSynchronizationObject* objects[] = {this};
        R_TRY(KSynchronizationObject::Wait(m_kernel, std::addressof(index), objects, 1,
                                           Svc::WaitInfinite));
    }

    R_SUCCEED();
}

ThreadState KThread::RequestTerminate() {
    ASSERT(this != GetCurrentThreadPointer(m_kernel));

    KScopedSchedulerLock sl{m_kernel};

    // Determine if this is the first termination request.
    const bool first_request = [&]() -> bool {
        // Perform an atomic compare-and-swap from false to true.
        bool expected = false;
        return m_termination_requested.compare_exchange_strong(expected, true);
    }();

    // If this is the first request, start termination procedure.
    if (first_request) {
        // If the thread is in initialized state, just change state to terminated.
        if (this->GetState() == ThreadState::Initialized) {
            m_thread_state = ThreadState::Terminated;
            return ThreadState::Terminated;
        }

        // Register the terminating dpc.
        this->RegisterDpc(DpcFlag::Terminating);

        // If the thread is pinned, unpin it.
        if (this->GetStackParameters().is_pinned) {
            this->GetOwnerProcess()->UnpinThread(this);
        }

        // If the thread is suspended, continue it.
        if (this->IsSuspended()) {
            m_suspend_allowed_flags = 0;
            this->UpdateState();
        }

        // Change the thread's priority to be higher than any system thread's.
        this->IncreaseBasePriority(TerminatingThreadPriority);

        // If the thread is runnable, send a termination interrupt to other cores.
        if (this->GetState() == ThreadState::Runnable) {
            if (const u64 core_mask = m_physical_affinity_mask.GetAffinityMask() &
                                      ~(1ULL << GetCurrentCoreId(m_kernel));
                core_mask != 0) {
                Kernel::KInterruptManager::SendInterProcessorInterrupt(m_kernel, core_mask);
            }
        }

        // Wake up the thread.
        if (this->GetState() == ThreadState::Waiting) {
            m_wait_queue->CancelWait(this, ResultTerminationRequested, true);
        }
    }

    return this->GetState();
}

Result KThread::Sleep(s64 timeout) {
    ASSERT(!KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
    ASSERT(this == GetCurrentThreadPointer(m_kernel));
    ASSERT(timeout > 0);

    ThreadQueueImplForKThreadSleep wait_queue(m_kernel);
    KHardwareTimer* timer{};
    {
        // Setup the scheduling lock and sleep.
        KScopedSchedulerLockAndSleep slp(m_kernel, std::addressof(timer), this, timeout);

        // Check if the thread should terminate.
        if (this->IsTerminationRequested()) {
            slp.CancelSleep();
            R_THROW(ResultTerminationRequested);
        }

        // Wait for the sleep to end.
        wait_queue.SetHardwareTimer(timer);
        this->BeginWait(std::addressof(wait_queue));
        this->SetWaitReasonForDebugging(ThreadWaitReasonForDebugging::Sleep);
    }

    R_SUCCEED();
}

void KThread::RequestDummyThreadWait() {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
    ASSERT(this->IsDummyThread());

    // We will block when the scheduler lock is released.
    std::scoped_lock lock{m_dummy_thread_mutex};
    m_dummy_thread_runnable = false;
}

void KThread::DummyThreadBeginWait() {
    if (!this->IsDummyThread() || m_kernel.IsPhantomModeForSingleCore()) {
        // Occurs in single core mode.
        return;
    }

    // Block until runnable is no longer false.
    std::unique_lock lock{m_dummy_thread_mutex};
    m_dummy_thread_cv.wait(lock, [this] { return m_dummy_thread_runnable; });
}

void KThread::DummyThreadEndWait() {
    ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
    ASSERT(this->IsDummyThread());

    // Wake up the waiting thread.
    {
        std::scoped_lock lock{m_dummy_thread_mutex};
        m_dummy_thread_runnable = true;
    }
    m_dummy_thread_cv.notify_one();
}

void KThread::BeginWait(KThreadQueue* queue) {
    // Set our state as waiting.
    this->SetState(ThreadState::Waiting);

    // Set our wait queue.
    m_wait_queue = queue;
}

void KThread::NotifyAvailable(KSynchronizationObject* signaled_object, Result wait_result) {
    // Lock the scheduler.
    KScopedSchedulerLock sl(m_kernel);

    // If we're waiting, notify our queue that we're available.
    if (this->GetState() == ThreadState::Waiting) {
        m_wait_queue->NotifyAvailable(this, signaled_object, wait_result);
    }
}

void KThread::EndWait(Result wait_result) {
    // Lock the scheduler.
    KScopedSchedulerLock sl(m_kernel);

    // If we're waiting, notify our queue that we're available.
    if (this->GetState() == ThreadState::Waiting) {
        if (m_wait_queue == nullptr) {
            // This should never happen, but avoid a hard crash below to get this logged.
            ASSERT_MSG(false, "wait_queue is nullptr!");
            return;
        }

        m_wait_queue->EndWait(this, wait_result);
    }
}

void KThread::CancelWait(Result wait_result, bool cancel_timer_task) {
    // Lock the scheduler.
    KScopedSchedulerLock sl(m_kernel);

    // If we're waiting, notify our queue that we're available.
    if (this->GetState() == ThreadState::Waiting) {
        m_wait_queue->CancelWait(this, wait_result, cancel_timer_task);
    }
}

void KThread::SetState(ThreadState state) {
    KScopedSchedulerLock sl{m_kernel};

    // Clear debugging state
    this->SetWaitReasonForDebugging({});

    const ThreadState old_state = m_thread_state.load(std::memory_order_relaxed);
    m_thread_state.store(
        static_cast<ThreadState>((old_state & ~ThreadState::Mask) | (state & ThreadState::Mask)),
        std::memory_order_relaxed);
    if (m_thread_state.load(std::memory_order_relaxed) != old_state) {
        KScheduler::OnThreadStateChanged(m_kernel, this, old_state);
    }
}

std::shared_ptr<Common::Fiber>& KThread::GetHostContext() {
    return m_host_context;
}

void SetCurrentThread(KernelCore& kernel, KThread* thread) {
    kernel.SetCurrentEmuThread(thread);
}

KThread* GetCurrentThreadPointer(KernelCore& kernel) {
    return kernel.GetCurrentEmuThread();
}

KThread& GetCurrentThread(KernelCore& kernel) {
    return *GetCurrentThreadPointer(kernel);
}

KProcess* GetCurrentProcessPointer(KernelCore& kernel) {
    return GetCurrentThread(kernel).GetOwnerProcess();
}

KProcess& GetCurrentProcess(KernelCore& kernel) {
    return *GetCurrentProcessPointer(kernel);
}

s32 GetCurrentCoreId(KernelCore& kernel) {
    return GetCurrentThread(kernel).GetCurrentCore();
}

Core::Memory::Memory& GetCurrentMemory(KernelCore& kernel) {
    // TODO: per-process memory
    return kernel.System().ApplicationMemory();
}

KScopedDisableDispatch::~KScopedDisableDispatch() {
    // If we are shutting down the kernel, none of this is relevant anymore.
    if (m_kernel.IsShuttingDown()) {
        return;
    }

    if (GetCurrentThread(m_kernel).GetDisableDispatchCount() <= 1) {
        auto* scheduler = m_kernel.CurrentScheduler();

        if (scheduler && !m_kernel.IsPhantomModeForSingleCore()) {
            scheduler->RescheduleCurrentCore();
        } else {
            KScheduler::RescheduleCurrentHLEThread(m_kernel);
        }
    } else {
        GetCurrentThread(m_kernel).EnableDispatch();
    }
}

} // namespace Kernel