aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/video_core/textures/astc.cpp
blob: fef0be31d81e8e370e6f5e1798d9eda883d13624 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
// SPDX-FileCopyrightText: 2016 The University of North Carolina at Chapel Hill
// SPDX-License-Identifier: Apache-2.0

// Please send all BUG REPORTS to <pavel@cs.unc.edu>.
// <http://gamma.cs.unc.edu/FasTC/>

#include <algorithm>
#include <bit>
#include <cassert>
#include <cstring>
#include <span>
#include <vector>

#include <boost/container/static_vector.hpp>

#include "common/alignment.h"
#include "common/common_types.h"
#include "common/polyfill_ranges.h"
#include "video_core/textures/astc.h"
#include "video_core/textures/workers.h"

class InputBitStream {
public:
    constexpr explicit InputBitStream(std::span<const u8> data, size_t start_offset = 0)
        : cur_byte{data.data()}, total_bits{data.size()}, next_bit{start_offset % 8} {}

    constexpr size_t GetBitsRead() const {
        return bits_read;
    }

    constexpr bool ReadBit() {
        if (bits_read >= total_bits * 8) {
            return 0;
        }
        const bool bit = ((*cur_byte >> next_bit) & 1) != 0;
        ++next_bit;
        while (next_bit >= 8) {
            next_bit -= 8;
            ++cur_byte;
        }
        ++bits_read;
        return bit;
    }

    constexpr u32 ReadBits(std::size_t nBits) {
        u32 ret = 0;
        for (std::size_t i = 0; i < nBits; ++i) {
            ret |= (ReadBit() & 1) << i;
        }
        return ret;
    }

    template <std::size_t nBits>
    constexpr u32 ReadBits() {
        u32 ret = 0;
        for (std::size_t i = 0; i < nBits; ++i) {
            ret |= (ReadBit() & 1) << i;
        }
        return ret;
    }

private:
    const u8* cur_byte;
    size_t total_bits = 0;
    size_t next_bit = 0;
    size_t bits_read = 0;
};

class OutputBitStream {
public:
    constexpr explicit OutputBitStream(u8* ptr, std::size_t bits = 0, std::size_t start_offset = 0)
        : cur_byte{ptr}, num_bits{bits}, next_bit{start_offset % 8} {}

    constexpr std::size_t GetBitsWritten() const {
        return bits_written;
    }

    constexpr void WriteBitsR(u32 val, u32 nBits) {
        for (u32 i = 0; i < nBits; i++) {
            WriteBit((val >> (nBits - i - 1)) & 1);
        }
    }

    constexpr void WriteBits(u32 val, u32 nBits) {
        for (u32 i = 0; i < nBits; i++) {
            WriteBit((val >> i) & 1);
        }
    }

private:
    constexpr void WriteBit(bool b) {
        if (bits_written >= num_bits) {
            return;
        }

        const u32 mask = 1 << next_bit++;

        // clear the bit
        *cur_byte &= static_cast<u8>(~mask);

        // Write the bit, if necessary
        if (b)
            *cur_byte |= static_cast<u8>(mask);

        // Next byte?
        if (next_bit >= 8) {
            cur_byte += 1;
            next_bit = 0;
        }
    }

    u8* cur_byte;
    std::size_t num_bits;
    std::size_t bits_written = 0;
    std::size_t next_bit = 0;
};

template <typename IntType>
class Bits {
public:
    explicit Bits(const IntType& v) : m_Bits(v) {}

    Bits(const Bits&) = delete;
    Bits& operator=(const Bits&) = delete;

    u8 operator[](u32 bitPos) const {
        return static_cast<u8>((m_Bits >> bitPos) & 1);
    }

    IntType operator()(u32 start, u32 end) const {
        if (start == end) {
            return (*this)[start];
        } else if (start > end) {
            u32 t = start;
            start = end;
            end = t;
        }

        u64 mask = (1 << (end - start + 1)) - 1;
        return (m_Bits >> start) & static_cast<IntType>(mask);
    }

private:
    const IntType& m_Bits;
};

enum class IntegerEncoding { JustBits, Quint, Trit };

struct IntegerEncodedValue {
    constexpr IntegerEncodedValue() = default;

    constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
        : encoding{encoding_}, num_bits{num_bits_} {}

    constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
        return encoding == other.encoding && num_bits == other.num_bits;
    }

    // Returns the number of bits required to encode num_vals values.
    u32 GetBitLength(u32 num_vals) const {
        u32 total_bits = num_bits * num_vals;
        if (encoding == IntegerEncoding::Trit) {
            total_bits += (num_vals * 8 + 4) / 5;
        } else if (encoding == IntegerEncoding::Quint) {
            total_bits += (num_vals * 7 + 2) / 3;
        }
        return total_bits;
    }

    IntegerEncoding encoding{};
    u32 num_bits = 0;
    u32 bit_value = 0;
    union {
        u32 quint_value = 0;
        u32 trit_value;
    };
};

// Returns a new instance of this struct that corresponds to the
// can take no more than mav_value values
static constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) {
    while (mav_value > 0) {
        u32 check = mav_value + 1;

        // Is mav_value a power of two?
        if (!(check & (check - 1))) {
            return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value));
        }

        // Is mav_value of the type 3*2^n - 1?
        if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
            return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1));
        }

        // Is mav_value of the type 5*2^n - 1?
        if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
            return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1));
        }

        // Apparently it can't be represented with a bounded integer sequence...
        // just iterate.
        mav_value--;
    }
    return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
}

static constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
    std::array<IntegerEncodedValue, 256> encodings{};
    for (std::size_t i = 0; i < encodings.size(); ++i) {
        encodings[i] = CreateEncoding(static_cast<u32>(i));
    }
    return encodings;
}

static constexpr std::array<IntegerEncodedValue, 256> ASTC_ENCODINGS_VALUES = MakeEncodedValues();

namespace Tegra::Texture::ASTC {
using IntegerEncodedVector = boost::container::static_vector<
    IntegerEncodedValue, 256,
    boost::container::static_vector_options<
        boost::container::inplace_alignment<alignof(IntegerEncodedValue)>,
        boost::container::throw_on_overflow<false>>::type>;

static void DecodeTritBlock(InputBitStream& bits, IntegerEncodedVector& result, u32 nBitsPerValue) {
    // Implement the algorithm in section C.2.12
    std::array<u32, 5> m;
    std::array<u32, 5> t;
    u32 T;

    // Read the trit encoded block according to
    // table C.2.14
    m[0] = bits.ReadBits(nBitsPerValue);
    T = bits.ReadBits<2>();
    m[1] = bits.ReadBits(nBitsPerValue);
    T |= bits.ReadBits<2>() << 2;
    m[2] = bits.ReadBits(nBitsPerValue);
    T |= bits.ReadBit() << 4;
    m[3] = bits.ReadBits(nBitsPerValue);
    T |= bits.ReadBits<2>() << 5;
    m[4] = bits.ReadBits(nBitsPerValue);
    T |= bits.ReadBit() << 7;

    u32 C = 0;

    Bits<u32> Tb(T);
    if (Tb(2, 4) == 7) {
        C = (Tb(5, 7) << 2) | Tb(0, 1);
        t[4] = t[3] = 2;
    } else {
        C = Tb(0, 4);
        if (Tb(5, 6) == 3) {
            t[4] = 2;
            t[3] = Tb[7];
        } else {
            t[4] = Tb[7];
            t[3] = Tb(5, 6);
        }
    }

    Bits<u32> Cb(C);
    if (Cb(0, 1) == 3) {
        t[2] = 2;
        t[1] = Cb[4];
        t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
    } else if (Cb(2, 3) == 3) {
        t[2] = 2;
        t[1] = 2;
        t[0] = Cb(0, 1);
    } else {
        t[2] = Cb[4];
        t[1] = Cb(2, 3);
        t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
    }

    for (std::size_t i = 0; i < 5; ++i) {
        IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Trit, nBitsPerValue);
        val.bit_value = m[i];
        val.trit_value = t[i];
    }
}

static void DecodeQuintBlock(InputBitStream& bits, IntegerEncodedVector& result,
                             u32 nBitsPerValue) {
    // Implement the algorithm in section C.2.12
    u32 m[3];
    u32 q[3];
    u32 Q;

    // Read the trit encoded block according to
    // table C.2.15
    m[0] = bits.ReadBits(nBitsPerValue);
    Q = bits.ReadBits<3>();
    m[1] = bits.ReadBits(nBitsPerValue);
    Q |= bits.ReadBits<2>() << 3;
    m[2] = bits.ReadBits(nBitsPerValue);
    Q |= bits.ReadBits<2>() << 5;

    Bits<u32> Qb(Q);
    if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
        q[0] = q[1] = 4;
        q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
    } else {
        u32 C = 0;
        if (Qb(1, 2) == 3) {
            q[2] = 4;
            C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
        } else {
            q[2] = Qb(5, 6);
            C = Qb(0, 4);
        }

        Bits<u32> Cb(C);
        if (Cb(0, 2) == 5) {
            q[1] = 4;
            q[0] = Cb(3, 4);
        } else {
            q[1] = Cb(3, 4);
            q[0] = Cb(0, 2);
        }
    }

    for (std::size_t i = 0; i < 3; ++i) {
        IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Quint, nBitsPerValue);
        val.bit_value = m[i];
        val.quint_value = q[i];
    }
}

// Fills result with the values that are encoded in the given
// bitstream. We must know beforehand what the maximum possible
// value is, and how many values we're decoding.
static void DecodeIntegerSequence(IntegerEncodedVector& result, InputBitStream& bits, u32 maxRange,
                                  u32 nValues) {
    // Determine encoding parameters
    IntegerEncodedValue val = ASTC_ENCODINGS_VALUES[maxRange];

    // Start decoding
    u32 nValsDecoded = 0;
    while (nValsDecoded < nValues) {
        switch (val.encoding) {
        case IntegerEncoding::Quint:
            DecodeQuintBlock(bits, result, val.num_bits);
            nValsDecoded += 3;
            break;

        case IntegerEncoding::Trit:
            DecodeTritBlock(bits, result, val.num_bits);
            nValsDecoded += 5;
            break;

        case IntegerEncoding::JustBits:
            val.bit_value = bits.ReadBits(val.num_bits);
            result.push_back(val);
            nValsDecoded++;
            break;
        }
    }
}

struct TexelWeightParams {
    u32 m_Width = 0;
    u32 m_Height = 0;
    bool m_bDualPlane = false;
    u32 m_MaxWeight = 0;
    bool m_bError = false;
    bool m_bVoidExtentLDR = false;
    bool m_bVoidExtentHDR = false;

    u32 GetPackedBitSize() const {
        // How many indices do we have?
        u32 nIdxs = m_Height * m_Width;
        if (m_bDualPlane) {
            nIdxs *= 2;
        }

        return ASTC_ENCODINGS_VALUES[m_MaxWeight].GetBitLength(nIdxs);
    }

    u32 GetNumWeightValues() const {
        u32 ret = m_Width * m_Height;
        if (m_bDualPlane) {
            ret *= 2;
        }
        return ret;
    }
};

static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
    TexelWeightParams params;

    // Read the entire block mode all at once
    u16 modeBits = static_cast<u16>(strm.ReadBits<11>());

    // Does this match the void extent block mode?
    if ((modeBits & 0x01FF) == 0x1FC) {
        if (modeBits & 0x200) {
            params.m_bVoidExtentHDR = true;
        } else {
            params.m_bVoidExtentLDR = true;
        }

        // Next two bits must be one.
        if (!(modeBits & 0x400) || !strm.ReadBit()) {
            params.m_bError = true;
        }

        return params;
    }

    // First check if the last four bits are zero
    if ((modeBits & 0xF) == 0) {
        params.m_bError = true;
        return params;
    }

    // If the last two bits are zero, then if bits
    // [6-8] are all ones, this is also reserved.
    if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) {
        params.m_bError = true;
        return params;
    }

    // Otherwise, there is no error... Figure out the layout
    // of the block mode. Layout is determined by a number
    // between 0 and 9 corresponding to table C.2.8 of the
    // ASTC spec.
    u32 layout = 0;

    if ((modeBits & 0x1) || (modeBits & 0x2)) {
        // layout is in [0-4]
        if (modeBits & 0x8) {
            // layout is in [2-4]
            if (modeBits & 0x4) {
                // layout is in [3-4]
                if (modeBits & 0x100) {
                    layout = 4;
                } else {
                    layout = 3;
                }
            } else {
                layout = 2;
            }
        } else {
            // layout is in [0-1]
            if (modeBits & 0x4) {
                layout = 1;
            } else {
                layout = 0;
            }
        }
    } else {
        // layout is in [5-9]
        if (modeBits & 0x100) {
            // layout is in [7-9]
            if (modeBits & 0x80) {
                // layout is in [7-8]
                assert((modeBits & 0x40) == 0U);
                if (modeBits & 0x20) {
                    layout = 8;
                } else {
                    layout = 7;
                }
            } else {
                layout = 9;
            }
        } else {
            // layout is in [5-6]
            if (modeBits & 0x80) {
                layout = 6;
            } else {
                layout = 5;
            }
        }
    }

    assert(layout < 10);

    // Determine R
    u32 R = !!(modeBits & 0x10);
    if (layout < 5) {
        R |= (modeBits & 0x3) << 1;
    } else {
        R |= (modeBits & 0xC) >> 1;
    }
    assert(2 <= R && R <= 7);

    // Determine width & height
    switch (layout) {
    case 0: {
        u32 A = (modeBits >> 5) & 0x3;
        u32 B = (modeBits >> 7) & 0x3;
        params.m_Width = B + 4;
        params.m_Height = A + 2;
        break;
    }

    case 1: {
        u32 A = (modeBits >> 5) & 0x3;
        u32 B = (modeBits >> 7) & 0x3;
        params.m_Width = B + 8;
        params.m_Height = A + 2;
        break;
    }

    case 2: {
        u32 A = (modeBits >> 5) & 0x3;
        u32 B = (modeBits >> 7) & 0x3;
        params.m_Width = A + 2;
        params.m_Height = B + 8;
        break;
    }

    case 3: {
        u32 A = (modeBits >> 5) & 0x3;
        u32 B = (modeBits >> 7) & 0x1;
        params.m_Width = A + 2;
        params.m_Height = B + 6;
        break;
    }

    case 4: {
        u32 A = (modeBits >> 5) & 0x3;
        u32 B = (modeBits >> 7) & 0x1;
        params.m_Width = B + 2;
        params.m_Height = A + 2;
        break;
    }

    case 5: {
        u32 A = (modeBits >> 5) & 0x3;
        params.m_Width = 12;
        params.m_Height = A + 2;
        break;
    }

    case 6: {
        u32 A = (modeBits >> 5) & 0x3;
        params.m_Width = A + 2;
        params.m_Height = 12;
        break;
    }

    case 7: {
        params.m_Width = 6;
        params.m_Height = 10;
        break;
    }

    case 8: {
        params.m_Width = 10;
        params.m_Height = 6;
        break;
    }

    case 9: {
        u32 A = (modeBits >> 5) & 0x3;
        u32 B = (modeBits >> 9) & 0x3;
        params.m_Width = A + 6;
        params.m_Height = B + 6;
        break;
    }

    default:
        assert(false && "Don't know this layout...");
        params.m_bError = true;
        break;
    }

    // Determine whether or not we're using dual planes
    // and/or high precision layouts.
    bool D = (layout != 9) && (modeBits & 0x400);
    bool H = (layout != 9) && (modeBits & 0x200);

    if (H) {
        const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31};
        params.m_MaxWeight = maxWeights[R - 2];
    } else {
        const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7};
        params.m_MaxWeight = maxWeights[R - 2];
    }

    params.m_bDualPlane = D;

    return params;
}

// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
// is the same as [(num_bits - 1):0] and repeats all the way down.
template <typename IntType>
static constexpr IntType Replicate(IntType val, u32 num_bits, u32 to_bit) {
    if (num_bits == 0 || to_bit == 0) {
        return 0;
    }
    const IntType v = val & static_cast<IntType>((1 << num_bits) - 1);
    IntType res = v;
    u32 reslen = num_bits;
    while (reslen < to_bit) {
        u32 comp = 0;
        if (num_bits > to_bit - reslen) {
            u32 newshift = to_bit - reslen;
            comp = num_bits - newshift;
            num_bits = newshift;
        }
        res = static_cast<IntType>(res << num_bits);
        res = static_cast<IntType>(res | (v >> comp));
        reslen += num_bits;
    }
    return res;
}

static constexpr std::size_t NumReplicateEntries(u32 num_bits) {
    return std::size_t(1) << num_bits;
}

template <typename IntType, u32 num_bits, u32 to_bit>
static constexpr auto MakeReplicateTable() {
    std::array<IntType, NumReplicateEntries(num_bits)> table{};
    for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
        table[value] = Replicate(value, num_bits, to_bit);
    }
    return table;
}

static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
static constexpr u32 ReplicateByteTo16(std::size_t value) {
    return REPLICATE_BYTE_TO_16_TABLE[value];
}

static constexpr auto REPLICATE_BIT_TO_7_TABLE = MakeReplicateTable<u32, 1, 7>();
static constexpr u32 ReplicateBitTo7(std::size_t value) {
    return REPLICATE_BIT_TO_7_TABLE[value];
}

static constexpr auto REPLICATE_BIT_TO_9_TABLE = MakeReplicateTable<u32, 1, 9>();
static constexpr u32 ReplicateBitTo9(std::size_t value) {
    return REPLICATE_BIT_TO_9_TABLE[value];
}

static constexpr auto REPLICATE_1_BIT_TO_8_TABLE = MakeReplicateTable<u32, 1, 8>();
static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable<u32, 2, 8>();
static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable<u32, 3, 8>();
static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable<u32, 4, 8>();
static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable<u32, 5, 8>();
static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback
/// to the runtime implementation
static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) {
    switch (num_bits) {
    case 1:
        return REPLICATE_1_BIT_TO_8_TABLE[value];
    case 2:
        return REPLICATE_2_BIT_TO_8_TABLE[value];
    case 3:
        return REPLICATE_3_BIT_TO_8_TABLE[value];
    case 4:
        return REPLICATE_4_BIT_TO_8_TABLE[value];
    case 5:
        return REPLICATE_5_BIT_TO_8_TABLE[value];
    case 6:
        return REPLICATE_6_BIT_TO_8_TABLE[value];
    case 7:
        return REPLICATE_7_BIT_TO_8_TABLE[value];
    case 8:
        return REPLICATE_8_BIT_TO_8_TABLE[value];
    default:
        return Replicate(value, num_bits, 8);
    }
}

static constexpr auto REPLICATE_1_BIT_TO_6_TABLE = MakeReplicateTable<u32, 1, 6>();
static constexpr auto REPLICATE_2_BIT_TO_6_TABLE = MakeReplicateTable<u32, 2, 6>();
static constexpr auto REPLICATE_3_BIT_TO_6_TABLE = MakeReplicateTable<u32, 3, 6>();
static constexpr auto REPLICATE_4_BIT_TO_6_TABLE = MakeReplicateTable<u32, 4, 6>();
static constexpr auto REPLICATE_5_BIT_TO_6_TABLE = MakeReplicateTable<u32, 5, 6>();
static constexpr u32 FastReplicateTo6(u32 value, u32 num_bits) {
    switch (num_bits) {
    case 1:
        return REPLICATE_1_BIT_TO_6_TABLE[value];
    case 2:
        return REPLICATE_2_BIT_TO_6_TABLE[value];
    case 3:
        return REPLICATE_3_BIT_TO_6_TABLE[value];
    case 4:
        return REPLICATE_4_BIT_TO_6_TABLE[value];
    case 5:
        return REPLICATE_5_BIT_TO_6_TABLE[value];
    default:
        return Replicate(value, num_bits, 6);
    }
}

class Pixel {
protected:
    using ChannelType = s16;
    u8 m_BitDepth[4] = {8, 8, 8, 8};
    s16 color[4] = {};

public:
    Pixel() = default;
    Pixel(u32 a, u32 r, u32 g, u32 b, u32 bitDepth = 8)
        : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)},
          color{static_cast<ChannelType>(a), static_cast<ChannelType>(r),
                static_cast<ChannelType>(g), static_cast<ChannelType>(b)} {}

    // Changes the depth of each pixel. This scales the values to
    // the appropriate bit depth by either truncating the least
    // significant bits when going from larger to smaller bit depth
    // or by repeating the most significant bits when going from
    // smaller to larger bit depths.
    void ChangeBitDepth() {
        for (u32 i = 0; i < 4; i++) {
            Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i]);
            m_BitDepth[i] = 8;
        }
    }

    template <typename IntType>
    static float ConvertChannelToFloat(IntType channel, u8 bitDepth) {
        float denominator = static_cast<float>((1 << bitDepth) - 1);
        return static_cast<float>(channel) / denominator;
    }

    // Changes the bit depth of a single component. See the comment
    // above for how we do this.
    static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth) {
        assert(oldDepth <= 8);

        if (oldDepth == 8) {
            // Do nothing
            return val;
        } else if (oldDepth == 0) {
            return static_cast<ChannelType>((1 << 8) - 1);
        } else if (8 > oldDepth) {
            return static_cast<ChannelType>(FastReplicateTo8(static_cast<u32>(val), oldDepth));
        } else {
            // oldDepth > newDepth
            const u8 bitsWasted = static_cast<u8>(oldDepth - 8);
            u16 v = static_cast<u16>(val);
            v = static_cast<u16>((v + (1 << (bitsWasted - 1))) >> bitsWasted);
            v = ::std::min<u16>(::std::max<u16>(0, v), static_cast<u16>((1 << 8) - 1));
            return static_cast<u8>(v);
        }

        assert(false && "We shouldn't get here.");
        return 0;
    }

    const ChannelType& A() const {
        return color[0];
    }
    ChannelType& A() {
        return color[0];
    }
    const ChannelType& R() const {
        return color[1];
    }
    ChannelType& R() {
        return color[1];
    }
    const ChannelType& G() const {
        return color[2];
    }
    ChannelType& G() {
        return color[2];
    }
    const ChannelType& B() const {
        return color[3];
    }
    ChannelType& B() {
        return color[3];
    }
    const ChannelType& Component(u32 idx) const {
        return color[idx];
    }
    ChannelType& Component(u32 idx) {
        return color[idx];
    }

    void GetBitDepth(u8 (&outDepth)[4]) const {
        for (s32 i = 0; i < 4; i++) {
            outDepth[i] = m_BitDepth[i];
        }
    }

    // Take all of the components, transform them to their 8-bit variants,
    // and then pack each channel into an R8G8B8A8 32-bit integer. We assume
    // that the architecture is little-endian, so the alpha channel will end
    // up in the most-significant byte.
    u32 Pack() const {
        Pixel eightBit(*this);
        eightBit.ChangeBitDepth();

        u32 r = 0;
        r |= eightBit.A();
        r <<= 8;
        r |= eightBit.B();
        r <<= 8;
        r |= eightBit.G();
        r <<= 8;
        r |= eightBit.R();
        return r;
    }

    // Clamps the pixel to the range [0,255]
    void ClampByte() {
        for (u32 i = 0; i < 4; i++) {
            color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
        }
    }

    void MakeOpaque() {
        A() = 255;
    }
};

static void DecodeColorValues(u32* out, std::span<u8> data, const u32* modes, const u32 nPartitions,
                              const u32 nBitsForColorData) {
    // First figure out how many color values we have
    u32 nValues = 0;
    for (u32 i = 0; i < nPartitions; i++) {
        nValues += ((modes[i] >> 2) + 1) << 1;
    }

    // Then based on the number of values and the remaining number of bits,
    // figure out the max value for each of them...
    u32 range = 256;
    while (--range > 0) {
        IntegerEncodedValue val = ASTC_ENCODINGS_VALUES[range];
        u32 bitLength = val.GetBitLength(nValues);
        if (bitLength <= nBitsForColorData) {
            // Find the smallest possible range that matches the given encoding
            while (--range > 0) {
                IntegerEncodedValue newval = ASTC_ENCODINGS_VALUES[range];
                if (!newval.MatchesEncoding(val)) {
                    break;
                }
            }

            // Return to last matching range.
            range++;
            break;
        }
    }

    // We now have enough to decode our integer sequence.
    IntegerEncodedVector decodedColorValues;

    InputBitStream colorStream(data, 0);
    DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);

    // Once we have the decoded values, we need to dequantize them to the 0-255 range
    // This procedure is outlined in ASTC spec C.2.13
    u32 outIdx = 0;
    for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) {
        // Have we already decoded all that we need?
        if (outIdx >= nValues) {
            break;
        }

        const IntegerEncodedValue& val = *itr;
        u32 bitlen = val.num_bits;
        u32 bitval = val.bit_value;

        assert(bitlen >= 1);

        u32 A = 0, B = 0, C = 0, D = 0;
        // A is just the lsb replicated 9 times.
        A = ReplicateBitTo9(bitval & 1);

        switch (val.encoding) {
        // Replicate bits
        case IntegerEncoding::JustBits:
            out[outIdx++] = FastReplicateTo8(bitval, bitlen);
            break;

        // Use algorithm in C.2.13
        case IntegerEncoding::Trit: {

            D = val.trit_value;

            switch (bitlen) {
            case 1: {
                C = 204;
            } break;

            case 2: {
                C = 93;
                // B = b000b0bb0
                u32 b = (bitval >> 1) & 1;
                B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
            } break;

            case 3: {
                C = 44;
                // B = cb000cbcb
                u32 cb = (bitval >> 1) & 3;
                B = (cb << 7) | (cb << 2) | cb;
            } break;

            case 4: {
                C = 22;
                // B = dcb000dcb
                u32 dcb = (bitval >> 1) & 7;
                B = (dcb << 6) | dcb;
            } break;

            case 5: {
                C = 11;
                // B = edcb000ed
                u32 edcb = (bitval >> 1) & 0xF;
                B = (edcb << 5) | (edcb >> 2);
            } break;

            case 6: {
                C = 5;
                // B = fedcb000f
                u32 fedcb = (bitval >> 1) & 0x1F;
                B = (fedcb << 4) | (fedcb >> 4);
            } break;

            default:
                assert(false && "Unsupported trit encoding for color values!");
                break;
            } // switch(bitlen)
        }     // case IntegerEncoding::Trit
        break;

        case IntegerEncoding::Quint: {

            D = val.quint_value;

            switch (bitlen) {
            case 1: {
                C = 113;
            } break;

            case 2: {
                C = 54;
                // B = b0000bb00
                u32 b = (bitval >> 1) & 1;
                B = (b << 8) | (b << 3) | (b << 2);
            } break;

            case 3: {
                C = 26;
                // B = cb0000cbc
                u32 cb = (bitval >> 1) & 3;
                B = (cb << 7) | (cb << 1) | (cb >> 1);
            } break;

            case 4: {
                C = 13;
                // B = dcb0000dc
                u32 dcb = (bitval >> 1) & 7;
                B = (dcb << 6) | (dcb >> 1);
            } break;

            case 5: {
                C = 6;
                // B = edcb0000e
                u32 edcb = (bitval >> 1) & 0xF;
                B = (edcb << 5) | (edcb >> 3);
            } break;

            default:
                assert(false && "Unsupported quint encoding for color values!");
                break;
            } // switch(bitlen)
        }     // case IntegerEncoding::Quint
        break;
        } // switch(val.encoding)

        if (val.encoding != IntegerEncoding::JustBits) {
            u32 T = D * C + B;
            T ^= A;
            T = (A & 0x80) | (T >> 2);
            out[outIdx++] = T;
        }
    }

    // Make sure that each of our values is in the proper range...
    for (u32 i = 0; i < nValues; i++) {
        assert(out[i] <= 255);
    }
}

static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) {
    u32 bitval = val.bit_value;
    u32 bitlen = val.num_bits;

    u32 A = ReplicateBitTo7(bitval & 1);
    u32 B = 0, C = 0, D = 0;

    u32 result = 0;
    switch (val.encoding) {
    case IntegerEncoding::JustBits:
        result = FastReplicateTo6(bitval, bitlen);
        break;

    case IntegerEncoding::Trit: {
        D = val.trit_value;
        assert(D < 3);

        switch (bitlen) {
        case 0: {
            u32 results[3] = {0, 32, 63};
            result = results[D];
        } break;

        case 1: {
            C = 50;
        } break;

        case 2: {
            C = 23;
            u32 b = (bitval >> 1) & 1;
            B = (b << 6) | (b << 2) | b;
        } break;

        case 3: {
            C = 11;
            u32 cb = (bitval >> 1) & 3;
            B = (cb << 5) | cb;
        } break;

        default:
            assert(false && "Invalid trit encoding for texel weight");
            break;
        }
    } break;

    case IntegerEncoding::Quint: {
        D = val.quint_value;
        assert(D < 5);

        switch (bitlen) {
        case 0: {
            u32 results[5] = {0, 16, 32, 47, 63};
            result = results[D];
        } break;

        case 1: {
            C = 28;
        } break;

        case 2: {
            C = 13;
            u32 b = (bitval >> 1) & 1;
            B = (b << 6) | (b << 1);
        } break;

        default:
            assert(false && "Invalid quint encoding for texel weight");
            break;
        }
    } break;
    }

    if (val.encoding != IntegerEncoding::JustBits && bitlen > 0) {
        // Decode the value...
        result = D * C + B;
        result ^= A;
        result = (A & 0x20) | (result >> 2);
    }

    assert(result < 64);

    // Change from [0,63] to [0,64]
    if (result > 32) {
        result += 1;
    }

    return result;
}

static void UnquantizeTexelWeights(u32 out[2][144], const IntegerEncodedVector& weights,
                                   const TexelWeightParams& params, const u32 blockWidth,
                                   const u32 blockHeight) {
    u32 weightIdx = 0;
    u32 unquantized[2][144];

    for (auto itr = weights.begin(); itr != weights.end(); ++itr) {
        unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);

        if (params.m_bDualPlane) {
            ++itr;
            unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
            if (itr == weights.end()) {
                break;
            }
        }

        if (++weightIdx >= (params.m_Width * params.m_Height))
            break;
    }

    // Do infill if necessary (Section C.2.18) ...
    u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
    u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);

    const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U;
    for (u32 plane = 0; plane < kPlaneScale; plane++)
        for (u32 t = 0; t < blockHeight; t++)
            for (u32 s = 0; s < blockWidth; s++) {
                u32 cs = Ds * s;
                u32 ct = Dt * t;

                u32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
                u32 gt = (ct * (params.m_Height - 1) + 32) >> 6;

                u32 js = gs >> 4;
                u32 fs = gs & 0xF;

                u32 jt = gt >> 4;
                u32 ft = gt & 0x0F;

                u32 w11 = (fs * ft + 8) >> 4;
                u32 w10 = ft - w11;
                u32 w01 = fs - w11;
                u32 w00 = 16 - fs - ft + w11;

                u32 v0 = js + jt * params.m_Width;

#define FIND_TEXEL(tidx, bidx)                                                                     \
    u32 p##bidx = 0;                                                                               \
    do {                                                                                           \
        if ((tidx) < (params.m_Width * params.m_Height)) {                                         \
            p##bidx = unquantized[plane][(tidx)];                                                  \
        }                                                                                          \
    } while (0)

                FIND_TEXEL(v0, 00);
                FIND_TEXEL(v0 + 1, 01);
                FIND_TEXEL(v0 + params.m_Width, 10);
                FIND_TEXEL(v0 + params.m_Width + 1, 11);

#undef FIND_TEXEL

                out[plane][t * blockWidth + s] =
                    (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
            }
}

// Transfers a bit as described in C.2.14
static inline void BitTransferSigned(int& a, int& b) {
    b >>= 1;
    b |= a & 0x80;
    a >>= 1;
    a &= 0x3F;
    if (a & 0x20)
        a -= 0x40;
}

// Adds more precision to the blue channel as described
// in C.2.14
static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) {
    return Pixel(static_cast<s16>(a), static_cast<s16>((r + b) >> 1),
                 static_cast<s16>((g + b) >> 1), static_cast<s16>(b));
}

// Partition selection functions as specified in
// C.2.21
static inline u32 hash52(u32 p) {
    p ^= p >> 15;
    p -= p << 17;
    p += p << 7;
    p += p << 4;
    p ^= p >> 5;
    p += p << 16;
    p ^= p >> 7;
    p ^= p >> 3;
    p ^= p << 6;
    p ^= p >> 17;
    return p;
}

static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) {
    if (1 == partitionCount)
        return 0;

    if (smallBlock) {
        x <<= 1;
        y <<= 1;
        z <<= 1;
    }

    seed += (partitionCount - 1) * 1024;

    u32 rnum = hash52(static_cast<u32>(seed));
    u8 seed1 = static_cast<u8>(rnum & 0xF);
    u8 seed2 = static_cast<u8>((rnum >> 4) & 0xF);
    u8 seed3 = static_cast<u8>((rnum >> 8) & 0xF);
    u8 seed4 = static_cast<u8>((rnum >> 12) & 0xF);
    u8 seed5 = static_cast<u8>((rnum >> 16) & 0xF);
    u8 seed6 = static_cast<u8>((rnum >> 20) & 0xF);
    u8 seed7 = static_cast<u8>((rnum >> 24) & 0xF);
    u8 seed8 = static_cast<u8>((rnum >> 28) & 0xF);
    u8 seed9 = static_cast<u8>((rnum >> 18) & 0xF);
    u8 seed10 = static_cast<u8>((rnum >> 22) & 0xF);
    u8 seed11 = static_cast<u8>((rnum >> 26) & 0xF);
    u8 seed12 = static_cast<u8>(((rnum >> 30) | (rnum << 2)) & 0xF);

    seed1 = static_cast<u8>(seed1 * seed1);
    seed2 = static_cast<u8>(seed2 * seed2);
    seed3 = static_cast<u8>(seed3 * seed3);
    seed4 = static_cast<u8>(seed4 * seed4);
    seed5 = static_cast<u8>(seed5 * seed5);
    seed6 = static_cast<u8>(seed6 * seed6);
    seed7 = static_cast<u8>(seed7 * seed7);
    seed8 = static_cast<u8>(seed8 * seed8);
    seed9 = static_cast<u8>(seed9 * seed9);
    seed10 = static_cast<u8>(seed10 * seed10);
    seed11 = static_cast<u8>(seed11 * seed11);
    seed12 = static_cast<u8>(seed12 * seed12);

    s32 sh1, sh2, sh3;
    if (seed & 1) {
        sh1 = (seed & 2) ? 4 : 5;
        sh2 = (partitionCount == 3) ? 6 : 5;
    } else {
        sh1 = (partitionCount == 3) ? 6 : 5;
        sh2 = (seed & 2) ? 4 : 5;
    }
    sh3 = (seed & 0x10) ? sh1 : sh2;

    seed1 = static_cast<u8>(seed1 >> sh1);
    seed2 = static_cast<u8>(seed2 >> sh2);
    seed3 = static_cast<u8>(seed3 >> sh1);
    seed4 = static_cast<u8>(seed4 >> sh2);
    seed5 = static_cast<u8>(seed5 >> sh1);
    seed6 = static_cast<u8>(seed6 >> sh2);
    seed7 = static_cast<u8>(seed7 >> sh1);
    seed8 = static_cast<u8>(seed8 >> sh2);
    seed9 = static_cast<u8>(seed9 >> sh3);
    seed10 = static_cast<u8>(seed10 >> sh3);
    seed11 = static_cast<u8>(seed11 >> sh3);
    seed12 = static_cast<u8>(seed12 >> sh3);

    s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
    s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
    s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
    s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);

    a &= 0x3F;
    b &= 0x3F;
    c &= 0x3F;
    d &= 0x3F;

    if (partitionCount < 4)
        d = 0;
    if (partitionCount < 3)
        c = 0;

    if (a >= b && a >= c && a >= d)
        return 0;
    else if (b >= c && b >= d)
        return 1;
    else if (c >= d)
        return 2;
    return 3;
}

static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) {
    return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
}

// Section C.2.14
static void ComputeEndpoints(Pixel& ep1, Pixel& ep2, const u32*& colorValues,
                             u32 colorEndpointMode) {
#define READ_UINT_VALUES(N)                                                                        \
    u32 v[N];                                                                                      \
    for (u32 i = 0; i < N; i++) {                                                                  \
        v[i] = *(colorValues++);                                                                   \
    }

#define READ_INT_VALUES(N)                                                                         \
    s32 v[N];                                                                                      \
    for (u32 i = 0; i < N; i++) {                                                                  \
        v[i] = static_cast<int>(*(colorValues++));                                                 \
    }

    switch (colorEndpointMode) {
    case 0: {
        READ_UINT_VALUES(2)
        ep1 = Pixel(0xFF, v[0], v[0], v[0]);
        ep2 = Pixel(0xFF, v[1], v[1], v[1]);
    } break;

    case 1: {
        READ_UINT_VALUES(2)
        u32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
        u32 L1 = std::min(L0 + (v[1] & 0x3F), 0xFFU);
        ep1 = Pixel(0xFF, L0, L0, L0);
        ep2 = Pixel(0xFF, L1, L1, L1);
    } break;

    case 4: {
        READ_UINT_VALUES(4)
        ep1 = Pixel(v[2], v[0], v[0], v[0]);
        ep2 = Pixel(v[3], v[1], v[1], v[1]);
    } break;

    case 5: {
        READ_INT_VALUES(4)
        BitTransferSigned(v[1], v[0]);
        BitTransferSigned(v[3], v[2]);
        ep1 = Pixel(v[2], v[0], v[0], v[0]);
        ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]);
        ep1.ClampByte();
        ep2.ClampByte();
    } break;

    case 6: {
        READ_UINT_VALUES(4)
        ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
        ep2 = Pixel(0xFF, v[0], v[1], v[2]);
    } break;

    case 8: {
        READ_UINT_VALUES(6)
        if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
            ep1 = Pixel(0xFF, v[0], v[2], v[4]);
            ep2 = Pixel(0xFF, v[1], v[3], v[5]);
        } else {
            ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
            ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
        }
    } break;

    case 9: {
        READ_INT_VALUES(6)
        BitTransferSigned(v[1], v[0]);
        BitTransferSigned(v[3], v[2]);
        BitTransferSigned(v[5], v[4]);
        if (v[1] + v[3] + v[5] >= 0) {
            ep1 = Pixel(0xFF, v[0], v[2], v[4]);
            ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
        } else {
            ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
            ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
        }
        ep1.ClampByte();
        ep2.ClampByte();
    } break;

    case 10: {
        READ_UINT_VALUES(6)
        ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
        ep2 = Pixel(v[5], v[0], v[1], v[2]);
    } break;

    case 12: {
        READ_UINT_VALUES(8)
        if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
            ep1 = Pixel(v[6], v[0], v[2], v[4]);
            ep2 = Pixel(v[7], v[1], v[3], v[5]);
        } else {
            ep1 = BlueContract(v[7], v[1], v[3], v[5]);
            ep2 = BlueContract(v[6], v[0], v[2], v[4]);
        }
    } break;

    case 13: {
        READ_INT_VALUES(8)
        BitTransferSigned(v[1], v[0]);
        BitTransferSigned(v[3], v[2]);
        BitTransferSigned(v[5], v[4]);
        BitTransferSigned(v[7], v[6]);
        if (v[1] + v[3] + v[5] >= 0) {
            ep1 = Pixel(v[6], v[0], v[2], v[4]);
            ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
        } else {
            ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
            ep2 = BlueContract(v[6], v[0], v[2], v[4]);
        }
        ep1.ClampByte();
        ep2.ClampByte();
    } break;

    default:
        assert(false && "Unsupported color endpoint mode (is it HDR?)");
        break;
    }

#undef READ_UINT_VALUES
#undef READ_INT_VALUES
}

static void FillVoidExtentLDR(InputBitStream& strm, std::span<u32> outBuf, u32 blockWidth,
                              u32 blockHeight) {
    // Don't actually care about the void extent, just read the bits...
    for (s32 i = 0; i < 4; ++i) {
        strm.ReadBits<13>();
    }

    // Decode the RGBA components and renormalize them to the range [0, 255]
    u16 r = static_cast<u16>(strm.ReadBits<16>());
    u16 g = static_cast<u16>(strm.ReadBits<16>());
    u16 b = static_cast<u16>(strm.ReadBits<16>());
    u16 a = static_cast<u16>(strm.ReadBits<16>());

    u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 |
               (static_cast<u32>(a) & 0xFF00) << 16;

    for (u32 j = 0; j < blockHeight; j++) {
        for (u32 i = 0; i < blockWidth; i++) {
            outBuf[j * blockWidth + i] = rgba;
        }
    }
}

static void FillError(std::span<u32> outBuf, u32 blockWidth, u32 blockHeight) {
    for (u32 j = 0; j < blockHeight; j++) {
        for (u32 i = 0; i < blockWidth; i++) {
            outBuf[j * blockWidth + i] = 0x00000000;
        }
    }
}

static void DecompressBlock(std::span<const u8, 16> inBuf, const u32 blockWidth,
                            const u32 blockHeight, std::span<u32, 12 * 12> outBuf) {
    InputBitStream strm(inBuf);
    TexelWeightParams weightParams = DecodeBlockInfo(strm);

    // Was there an error?
    if (weightParams.m_bError) {
        assert(false && "Invalid block mode");
        FillError(outBuf, blockWidth, blockHeight);
        return;
    }

    if (weightParams.m_bVoidExtentLDR) {
        FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight);
        return;
    }

    if (weightParams.m_bVoidExtentHDR) {
        assert(false && "HDR void extent blocks are unsupported!");
        FillError(outBuf, blockWidth, blockHeight);
        return;
    }

    if (weightParams.m_Width > blockWidth) {
        assert(false && "Texel weight grid width should be smaller than block width");
        FillError(outBuf, blockWidth, blockHeight);
        return;
    }

    if (weightParams.m_Height > blockHeight) {
        assert(false && "Texel weight grid height should be smaller than block height");
        FillError(outBuf, blockWidth, blockHeight);
        return;
    }

    // Read num partitions
    u32 nPartitions = strm.ReadBits<2>() + 1;
    assert(nPartitions <= 4);

    if (nPartitions == 4 && weightParams.m_bDualPlane) {
        assert(false && "Dual plane mode is incompatible with four partition blocks");
        FillError(outBuf, blockWidth, blockHeight);
        return;
    }

    // Based on the number of partitions, read the color endpoint mode for
    // each partition.

    // Determine partitions, partition index, and color endpoint modes
    u32 planeIdx{UINT32_MAX};
    u32 partitionIndex{};
    u32 colorEndpointMode[4] = {0, 0, 0, 0};

    // Define color data.
    u8 colorEndpointData[16];
    memset(colorEndpointData, 0, sizeof(colorEndpointData));
    OutputBitStream colorEndpointStream(colorEndpointData, 16 * 8, 0);

    // Read extra config data...
    u32 baseCEM = 0;
    if (nPartitions == 1) {
        colorEndpointMode[0] = strm.ReadBits<4>();
        partitionIndex = 0;
    } else {
        partitionIndex = strm.ReadBits<10>();
        baseCEM = strm.ReadBits<6>();
    }
    u32 baseMode = (baseCEM & 3);

    // Remaining bits are color endpoint data...
    u32 nWeightBits = weightParams.GetPackedBitSize();
    s32 remainingBits = 128 - nWeightBits - static_cast<int>(strm.GetBitsRead());

    // Consider extra bits prior to texel data...
    u32 extraCEMbits = 0;
    if (baseMode) {
        switch (nPartitions) {
        case 2:
            extraCEMbits += 2;
            break;
        case 3:
            extraCEMbits += 5;
            break;
        case 4:
            extraCEMbits += 8;
            break;
        default:
            assert(false);
            break;
        }
    }
    remainingBits -= extraCEMbits;

    // Do we have a dual plane situation?
    u32 planeSelectorBits = 0;
    if (weightParams.m_bDualPlane) {
        planeSelectorBits = 2;
    }
    remainingBits -= planeSelectorBits;

    // Read color data...
    u32 colorDataBits = remainingBits;
    while (remainingBits > 0) {
        u32 nb = std::min(remainingBits, 8);
        u32 b = strm.ReadBits(nb);
        colorEndpointStream.WriteBits(b, nb);
        remainingBits -= 8;
    }

    // Read the plane selection bits
    planeIdx = strm.ReadBits(planeSelectorBits);

    // Read the rest of the CEM
    if (baseMode) {
        u32 extraCEM = strm.ReadBits(extraCEMbits);
        u32 CEM = (extraCEM << 6) | baseCEM;
        CEM >>= 2;

        bool C[4] = {0};
        for (u32 i = 0; i < nPartitions; i++) {
            C[i] = CEM & 1;
            CEM >>= 1;
        }

        u8 M[4] = {0};
        for (u32 i = 0; i < nPartitions; i++) {
            M[i] = CEM & 3;
            CEM >>= 2;
            assert(M[i] <= 3);
        }

        for (u32 i = 0; i < nPartitions; i++) {
            colorEndpointMode[i] = baseMode;
            if (!(C[i]))
                colorEndpointMode[i] -= 1;
            colorEndpointMode[i] <<= 2;
            colorEndpointMode[i] |= M[i];
        }
    } else if (nPartitions > 1) {
        u32 CEM = baseCEM >> 2;
        for (u32 i = 0; i < nPartitions; i++) {
            colorEndpointMode[i] = CEM;
        }
    }

    // Make sure everything up till here is sane.
    for (u32 i = 0; i < nPartitions; i++) {
        assert(colorEndpointMode[i] < 16);
    }
    assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);

    // Decode both color data and texel weight data
    u32 colorValues[32]; // Four values, two endpoints, four maximum partitions
    DecodeColorValues(colorValues, colorEndpointData, colorEndpointMode, nPartitions,
                      colorDataBits);

    Pixel endpoints[4][2];
    const u32* colorValuesPtr = colorValues;
    for (u32 i = 0; i < nPartitions; i++) {
        ComputeEndpoints(endpoints[i][0], endpoints[i][1], colorValuesPtr, colorEndpointMode[i]);
    }

    // Read the texel weight data..
    std::array<u8, 16> texelWeightData;
    std::ranges::copy(inBuf, texelWeightData.begin());

    // Reverse everything
    for (u32 i = 0; i < 8; i++) {
// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
        u8 a = static_cast<u8>(REVERSE_BYTE(texelWeightData[i]));
        u8 b = static_cast<u8>(REVERSE_BYTE(texelWeightData[15 - i]));
#undef REVERSE_BYTE

        texelWeightData[i] = b;
        texelWeightData[15 - i] = a;
    }

    // Make sure that higher non-texel bits are set to zero
    const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
    if (clearByteStart > 0 && clearByteStart <= texelWeightData.size()) {
        texelWeightData[clearByteStart - 1] &=
            static_cast<u8>((1 << (weightParams.GetPackedBitSize() % 8)) - 1);
        std::memset(texelWeightData.data() + clearByteStart, 0,
                    std::min(16U - clearByteStart, 16U));
    }

    IntegerEncodedVector texelWeightValues;

    InputBitStream weightStream(texelWeightData);

    DecodeIntegerSequence(texelWeightValues, weightStream, weightParams.m_MaxWeight,
                          weightParams.GetNumWeightValues());

    // Blocks can be at most 12x12, so we can have as many as 144 weights
    u32 weights[2][144];
    UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);

    // Now that we have endpoints and weights, we can interpolate and generate
    // the proper decoding...
    for (u32 j = 0; j < blockHeight; j++)
        for (u32 i = 0; i < blockWidth; i++) {
            u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions,
                                              (blockHeight * blockWidth) < 32);
            assert(partition < nPartitions);

            Pixel p;
            for (u32 c = 0; c < 4; c++) {
                u32 C0 = endpoints[partition][0].Component(c);
                C0 = ReplicateByteTo16(C0);
                u32 C1 = endpoints[partition][1].Component(c);
                C1 = ReplicateByteTo16(C1);

                u32 plane = 0;
                if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
                    plane = 1;
                }

                u32 weight = weights[plane][j * blockWidth + i];
                u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
                if (C == 65535) {
                    p.Component(c) = 255;
                } else {
                    double Cf = static_cast<double>(C);
                    p.Component(c) = static_cast<u16>(255.0 * (Cf / 65536.0) + 0.5);
                }
            }

            outBuf[j * blockWidth + i] = p.Pack();
        }
}

void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth,
                uint32_t block_width, uint32_t block_height, std::span<uint8_t> output) {
    const u32 rows = Common::DivideUp(height, block_height);
    const u32 cols = Common::DivideUp(width, block_width);

    Common::ThreadWorker& workers{GetThreadWorkers()};

    for (u32 z = 0; z < depth; ++z) {
        const u32 depth_offset = z * height * width * 4;
        for (u32 y_index = 0; y_index < rows; ++y_index) {
            auto decompress_stride = [data, width, height, block_width, block_height, output, rows,
                                      cols, z, depth_offset, y_index] {
                const u32 y = y_index * block_height;
                for (u32 x_index = 0; x_index < cols; ++x_index) {
                    const u32 block_index = (z * rows * cols) + (y_index * cols) + x_index;
                    const u32 x = x_index * block_width;

                    const std::span<const u8, 16> blockPtr{data.subspan(block_index * 16, 16)};

                    // Blocks can be at most 12x12
                    std::array<u32, 12 * 12> uncompData;
                    DecompressBlock(blockPtr, block_width, block_height, uncompData);

                    u32 decompWidth = std::min(block_width, width - x);
                    u32 decompHeight = std::min(block_height, height - y);

                    const std::span<u8> outRow = output.subspan(depth_offset + (y * width + x) * 4);
                    for (u32 h = 0; h < decompHeight; ++h) {
                        std::memcpy(outRow.data() + h * width * 4,
                                    uncompData.data() + h * block_width, decompWidth * 4);
                    }
                }
            };
            workers.QueueWork(std::move(decompress_stride));
        }
        workers.WaitForRequests();
    }
}

} // namespace Tegra::Texture::ASTC